{ "cells": [ { "cell_type": "markdown", "id": "9656c7be-8548-4143-95b6-18d4967e7a94", "metadata": {}, "source": [ "# Reading MATLAB `.mat` files" ] }, { "cell_type": "markdown", "id": "828f76bd-9b47-4da6-b1d2-57db39ced372", "metadata": {}, "source": [ "In one of the radiation lecture, you are asked to read files in the MATLAB `.mat` files (one file per day with vectors of `I` measured at\n", "the surface at 450 nm, along with the sun elevation angle for each measurement `SNH`). There seem to be no time attached to these measurements. Here is an example of how to read one of the file into a pandas dataframe with help of the [scipy](https://docs.scipy.org) library:" ] }, { "cell_type": "markdown", "id": "a3cb1622-feea-4aab-94c7-57bbe865ea19", "metadata": {}, "source": [ "## Reading mat files " ] }, { "cell_type": "code", "execution_count": 1, "id": "7d2bbba7-ec92-4403-84d5-12226067e13e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SNHI_450
010.0283380.238662
110.8385240.282054
211.6463880.321627
312.4461730.361128
413.2463670.398293
.........
10913.5030500.485676
11012.6845070.442991
11111.8903720.395319
11211.0715310.343366
11310.2937030.302224
\n", "

114 rows × 2 columns

\n", "
" ], "text/plain": [ " SNH I_450\n", "0 10.028338 0.238662\n", "1 10.838524 0.282054\n", "2 11.646388 0.321627\n", "3 12.446173 0.361128\n", "4 13.246367 0.398293\n", ".. ... ...\n", "109 13.503050 0.485676\n", "110 12.684507 0.442991\n", "111 11.890372 0.395319\n", "112 11.071531 0.343366\n", "113 10.293703 0.302224\n", "\n", "[114 rows x 2 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from scipy.io import loadmat # this is the SciPy module that loads mat-files\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "mat = loadmat('I_and_SNH_20111003.mat')\n", "\n", "# Put all columns which are not weird MATLAB ones into a dataframe\n", "df = pd.DataFrame()\n", "for k in mat:\n", " if '__' in k:\n", " continue\n", " df[k] = mat[k].flatten()\n", "\n", "# Name it \"day1\" for clarity\n", "df_day1 = df\n", "df_day1" ] }, { "cell_type": "markdown", "id": "1304cc83-b8c0-469f-b08c-a60c4ca5b992", "metadata": {}, "source": [ "## Plots " ] }, { "cell_type": "code", "execution_count": 2, "id": "3c118803-20bf-4621-a209-026b7f5aa357", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwL0lEQVR4nO3dd3wUdf7H8dcnm15ISAg1lNA7QQLC2RBRARUsKKiHWNHzbJwF/B2evR52T4UTxYIoYkGxnCjYaQmEEHpASihJIJSEkP79/TEbEhAkJJvMTvbzfDz2kezs7MxnMtn3zn535vsVYwxKKaWcx8/uApRSSlWPBrhSSjmUBrhSSjmUBrhSSjmUBrhSSjmUf12urFGjRqZNmzZ1uUqllHK85OTk3caY2KOn12mAt2nThqSkpLpcpVJKOZ6IbDnW9Co3oYiIS0SWi8hc9/14EVksIuki8qGIBHqqWKWUUid2Mm3gdwJrKt1/GnjeGNMe2Avc4MnClFJK/bkqBbiIxAEXAG+47wswCJjtnuVt4OJaqE8ppdRxVLUN/AXgPiDCfT8G2GeMKXHfzwBaHOuJIjIOGAfQqlWraheqlPIdxcXFZGRkUFBQYHcpdSo4OJi4uDgCAgKqNP8JA1xELgSyjDHJIjLwZAsyxkwFpgIkJiZqxytKqRPKyMggIiKCNm3aYH3gr/+MMezZs4eMjAzi4+Or9JyqHIGfBgwXkWFAMNAAeBGIEhF/91F4HLC9mnUrpdQRCgoKfCq8AUSEmJgYsrOzq/ycE7aBG2PuN8bEGWPaAKOB+caYq4EFwEj3bGOBOSdfslJKHZsvhXe5k93mmpwHPgH4QEQeA5YD02qwLKVqlTGGPQeLyDpQSHZeIXvyCsktKCG3oJiikrLD8wW4/AgJdBES6KJhaCBRoQE0jggmrmEIwQEuG7dAqT86qQA3xvwA/OD+fRPQz/MlKVUze/IKSc3Yz6od+1m98wCbsg+yNSef/KLS4z5HBE7UNX7jiCDaxYbTqWkEHZtE0LtVFB2bRODy870jRV/x+OOP8/777+NyufDz82PKlClMmDCBvLy8wxclJiUlcc899/DDDz/www8/MHnyZObOnXt4Gddeey0XXnghI0eOPN5qqq1Or8RUqjbsPVjETxuy+XnDbpK37OX33QcPP9Y6JpT2seEMaBdDy4ahNIsMJjYiiJjwIBoE+xMe7E+Qf8WRdXFpGYeKS8kvLGXfoSJyDhaReaCAbTmH2JqTT3pWHh8lbeOg+80gPMif3q2iODU+mlPbxtArLopAf+1iqD5YuHAhc+fOZdmyZQQFBbF7926KiooAyMrK4uuvv2bo0KG21qgBrhxpW04+36Tt4ptVu1i+dS9lBqJCA+jbJppRfVvSu2UUXZo3oEFw1U7HKhfg8iPA5UeD4ACaRgYfc56yMsO2vfks27qXpM3WbfK36wGICPLnzE6xnNulCed0aUzESa5feY+dO3fSqFEjgoKCAGjUqNHhx+69914ef/xxDXClqmp3XiFzV+zg05QdrNi2D4CuzRpw26AOnN0plp5xUXXSnOHnJ7SOCaN1TBiX9I4DrE8Bi3/P4Yd1WXy3JosvU3cS5O/HuV2bcOkpLTizQyz+Lj0yr46Hv1jF6h0HPLrMrs0b8OBF3f50nvPOO49HHnmEjh07MnjwYEaNGsVZZ50FwIABA/j0009ZsGABERERRzzv559/JiEh4fD9rVu3cuGFF3q0/nIa4MqrlZYZft6QzcwlW/l+TRYlZYauzRpw/9DODO3ejFYxoXaXCEDDsECGdG/KkO5NKSszLN+2lzkpO/hixQ7mpu6kaYNgrujbktF9W9I8KsTuclUVhIeHk5yczM8//8yCBQsYNWoUTz311OHHJ02axGOPPcbTTz99xPPOOOOMP7SB1xYNcOWVDhQUM2vpNqb/tpmMvYeIDgvk+tPjueyUODo1jTjxAmzk5yf0aR1Nn9bRPHBhV75fk8XMJVt5ef4GXpm/gXO6NOGaAa05vX0jnzxV7mSd6Ei5NrlcLgYOHMjAgQPp0aMHb7/99uHHBg0axKRJk1i0aJFt9WmAK6+SeaCAKT9u4sOlWzlYVEq/+GgmDOnMed2aHPFlo1MEuPwOH5lvy8ln5pKtfLh0G/NWZ9K5aQR/G9iOC3o00+YVL7Ru3Tr8/Pzo0KEDACkpKbRu3Zq0tLTD80yaNIlbbrmFtm3b2lKjBrjyCpkHCnh1QTozl26jtMwwoldzrj89nu4tIu0uzWNaRody35DO3Dm4A1+s2MmUHzdy5wcpPDdvPeMHd2R4r+b46SmJXiMvL4/bb7+dffv24e/vT/v27Zk6deoRpwMOGzaM2Ng/jLNQZ8Sc6ORXD0pMTDQ6oIOqbH9+Ma//tJG3fv2dklLDZafE8fez23tN23ZtKiszfLcmkxe+28DqnQfo3DSCCUM6M7BTrM83raxZs4YuXbrYXYYtjrXtIpJsjEk8el49Ale2KC4t471FW3jhuw3sP1TMiITm/OPcjrSOCbO7tDrj5yec160pg7s0Ye7KnTz77Tqum76Uv7SL4f6hXegRV38+fajaoQGu6tyCdVk8Onc1m7IPcnr7Rtw/rDPdmvtuWPn5CcN7NWdIt6a8v3gLL81P56JXfuHSU1owcWhnGkcc+3x0pTTAVZ3Zvu8QD3++im9XZ9K2URjTxiYyqHNjn28uKBfo78e1p8VzaZ84Xl2wkTd/+Z1vV2Vyxzntue60eAL0i051FA1wVetKSst469fNPDfPulpxwpDO3HB6vF5yfhwNggOYOLQzo/q25LG5q3niq7V8tnwHz4zsWa++1FU1pwGuatXqHQeY+EkqqRn7GdylMQ8N70Zcw/r/BaUnxDcKY9q1ffkmbRcPzEljxH9+5aYz2nLX4A7aM6ICNMBVLSkuLePVBRt5ef4GokIDeOWq3lzQo5k2l1TDkO5NGdA2hse/Ws3rP27k29W7+PfInvRpHW13acpm+hlWeVx6Vi6XvfYbz3+3ngt6NmPe+LO4sGdzDe8aiAwN4JmRvXj3hn4UFpcx8vWFPPnVmiP6Mle+RwNceYwxhncXbeGCl35hW04+r159Ci+O7k3DsEC7S6s3zugQy//Gn8novq2Y8tMmLnvtNzZl59ldVr0UHh5+wnkOHDhAXFwct9122+FpAwcOpFOnTiQkJJCQkEBWVhYAhYWFjBo1ivbt23PqqaeyefPmGtd4wgAXkWARWSIiK0RklYg87J4+XUR+F5EU9y2hxtUox9p7sIib303mgc/S6Bcfzf/Gn8mwHs3sLqteCg/y58lLezBlTB+27c3ngpd+YXZyht1l+aQHHniAM8888w/TZ8yYQUpKCikpKTRu3BiAadOm0bBhQ9LT0xk/fjwTJkyo8fqr0gZeCAwyxuSJSADwi4h87X7sXmPM7BpXoRwtectebn9/Gdl5hUy6oAvXnxavl4TXgfO7NaVXXBR3fbicez5awW/pu3n04u6EBdWzr7a+ngi7Vnp2mU17wNCnTjzfn0hOTiYzM5MhQ4ZQlSvM58yZw0MPPQTAyJEjue222zDG1KhpsSqDGhtjTPlntAD3re6uv1deyxjDGz9vYtSUhbhcwid/O40bz2ir4V2HmkYGM+PG/owf3JHPUrZz0Su/kJ6Va3dZ9V5ZWRl33303kydPPubj1113HQkJCTz66KOUd1eyfft2WrZsCYC/vz+RkZHs2bOnRnVU6a1aRFxAMtAe+I8xZrGI/A14XET+BXwPTDTGFNaoGuUY+UUl3Ds7lS9Td3Je1yb8+/JeRIbo6DN2cPkJdw7uQL/4aG6fuYwRr/zKs1ckMKR7U7tL84waHinXhldffZVhw4YRFxf3h8dmzJhBixYtyM3N5bLLLuPdd9/lmmuuqZU6qvQlpjGm1BiTAMQB/USkO3A/0BnoC0RjjVL/ByIyTkSSRCQpOzvbM1UrW23Zc5BLX/2Nr1fuZMKQzkwZ00fD2wsMaBfDF7efTvsmEdzyXjLPfruOsjL9sFwbFi5cyCuvvEKbNm245557eOedd5g4cSIALVq0ACAiIoKrrrqKJUuWHJ6+bds2AEpKSti/fz8xMTE1quOkzkIxxuwDFgBDjDE73c0rhcBbHGeEemPMVGNMojEm0c5uF5Vn/Ja+m+Gv/MrO/QVMv64ffxvYTk8P9CLNIkP4cFx/Lu8Tx8vz07n5vWTyCkvsLqvemTFjBlu3bmXz5s1MnjyZa665hqeeeoqSkhJ2794NQHFxMXPnzqV79+4ADB8+/PCAELNnz2bQoEE1fu2csAlFRGKBYmPMPhEJAc4FnhaRZsaYnWJVcDGQ9mfLUc733qItPPT5KuIbhfHG2ESf6jnQSYIDXDwzsiddmzfgsS/XcOmrv/LGNX19ooteuxUWFnL++edTXFxMaWkpgwcP5qabbgLghhtuYMyYMbRv357o6Gg++OCDGq/vhP2Bi0hP4G3AhXXEPssY84iIzAdiAQFSgFsqfdl5TNofuDOVlhkenbua6b9tZmCnWF6+sreOtu4Qv2zYzd/fX4bLT5g6pg+JbZxx9ab2B+6h/sCNMalA72NMH1STIpUz5BWWcMfM5cxfm8X1p8Xzzwu61MnI78ozTu/QiE9v/QvXT1/KVf9dzNMje3BJ7z9+8aacqZ6dMKo8adf+Aq6bvpT1mbk8enF3xvRvbXdJqhraxobz6a2n8bcZyYz/cAUZOYe4bVB7/e6iClauXMmYMWOOmBYUFMTixYttquhIGuDqmNKz8hj75hL25Rfx5rV9OaujfgHtZA3DAnnn+lOZ+HEqz85bT8beQzx2SXev7mO8phe5eEKPHj1ISUmps/Wd7BCXGuDqD5Zv3cv105fi8hM+vHmA9kFdTwT6+/HsFb2IaxjCS/PTycwt4LWr+xAS6H1d0wYHB7Nnzx5iYmJsD/G6Yoxhz549BAdXfQQmDXB1hB/XZ3PLu8nERgTx7g399EyTekZE+Md5nWgWFcI/P13JmGmLmXZtX687jz8uLo6MjAx87dqR4ODgY14cdDwa4OqwOSnbuXvWCjo2iWD69X11LMZ67Mp+rYgMCeDOD5Yzeuoi3rm+H7ERQXaXdVhAQADx8fF2l+H1vLcBTNWp6b/+zp0fpJDYpiEf3Nxfw9sHDOvRjGlj+7J590GumLKQ7fsO2V2SOkka4D7OGMMr8zfw0BerOb9bE6Zf148Geo63zzizYyzv3diP3XmFXPH6Qn7ffdDuktRJ0AD3YcYYnvp6LZO/Xc+lp7TgP1edomMt+qA+raOZeVN/DhWXcvnrC1m3S3szdAoNcB9ljOHBz1cx5adNXDOgNZNH9sLfi08pU7Wre4tIZt08AJcfjJ66kLTt++0uSVWBvmJ9UFmZYdJnabyzcAvjzmzLw8O7aR/eivaNw5l18wBCA/258r+LWLZ1r90lqRPQAPcxZWWGf36WxozFW7nlrHbcP7Szz5xnq06sdUwYs24ZQHRYINdMW6Ih7uU0wH2IMYYH5qQxc8lWbh3YjglDOml4qz9oERXCh+MG0Cg8kLHTlrBcQ9xraYD7CGMMD3+x+vCR973na3ir42saGczMcf2JDreOxFds22d3SeoYNMB9gDGGJ75aw/TfNnPD6fF65K2qpFlkCDNv6k9UWADXvLmE1TsO2F2SOooGuA94ft56/vvz74wd0JpJF3TR8FZV1jwqhPdv7E9ooIsx0xazIVNPMfQmGuD13Gs/bOSl+emMSmzJgxd10/BWJ61ldCjv39QfPz/h6jcWs2WPXuzjLTTA67F3Fm7m6W/WMrxXc564tIeeKqiqLb5RGDNuPJXi0jKufmMxO/frZffe4IQBLiLBIrJERFaIyCoRedg9PV5EFotIuoh8KCKBtV+uqqqPkzP415xVDO7ShGev6KWj6Kga69gkgrev78e+/GL++sZi9uQV2l2Sz6vKEXghMMgY0wtIAIaISH/gaeB5Y0x7YC9wQ61VqU7KN2m7uHf2Ck5rH8MrV/X26k77lbP0jIti2thEMvYeYuxbS8gtKLa7JJ92wle2sZQPVhzgvhlgEDDbPf1trJHplc1+S9/NHTOXk9AyiqljErVvE+Vxp7aN4fW/9mHtzlxufDuJguJSu0vyWVU6NBMRl4ikAFnAPGAjsM8YU+KeJQNocZznjhORJBFJ8rXO2eva6h0HGPduMvGNwnjr2n6EBWl376p2nN25Mc9e0Yslm3O47f3llJSW2V2ST6pSgBtjSo0xCUAc0A/oXNUVGGOmGmMSjTGJsbE6rmJt2ZaTz7VvLSEi2J/p1/clMlS7hFW1a0RCCx4Z0Z3v1mQy8ZOVJz2eo6q5kzpEM8bsE5EFwAAgSkT83UfhccD22ihQndjeg0WMfWsJBcWlzP7bX2gWGWJ3ScpHjOnfmj15hbzw3QaaNgjmnvM72V2ST6nKWSixIhLl/j0EOBdYAywARrpnGwvMqaUa1Z84VFTK9W8vJWPvId4Y25eOTSLsLkn5mDvP6cCV/VryyoJ03l20xe5yfEpVjsCbAW+LiAsr8GcZY+aKyGrgAxF5DFgOTKvFOtUxlJSWcfvMZaRs28drV59Cv/hou0tSPkhEeHREd7IOFPLgnDSaRARxXremdpflE6Qu260SExNNUlJSna2vPjPG8H+fWj0LPjqiG2MGtLG7JOXj8otKuHLqItZl5vLBuAEktIyyu6R6Q0SSjTGJR0/XE4Qd6tUfNjJzyVb+NrCdhrfyCqGB/rwxti+xEUHc+PZStuXk211SvacB7kCfLs/g3/9bx4iE5tx7nn5ppLxHbEQQ06/rR0mZYexbS9ifrxf61CYNcIdZuHEP981OpX/baJ4Z2VP7N1Fep11sOFPHJJKRc4ib30uiqETPEa8tGuAOsik7j1veS6Z1TBhTxiQS5K9XWSrv1C/eOsBYtCmH+/Uc8Vqjl+o5xN6DRVw/fSn+fsJb1/YlMkQv1FHe7eLeLdiyJ5/nv1tPm5hQbj+ng90l1Tsa4A5QVFLGLe8ls2N/ATNvOpWW0aF2l6RUldxxTns27znIs/PWEx8bxoU9m9tdUr2iTShezhjDpM9Wsvj3HP49sid9Wuu53so5RISnLutBn9YNuXvWCh1b08M0wL3cf3/exKykDO44pwMjEo7ZX5hSXi3I38WUMX2s0wvfSdLBIDxIA9yLfbc6kye/XssFPZtxl7YfKgdrFB7EtLF9OVRUyk3vJHGoSLug9QQNcC+1blcud36wnB4tInn28l56uqByvE5NI3hxdAKrdhzgntkr9MwUD9AA90I5B4u48Z2lhAX566AMql45p0sTJgzpzJepO3l5frrd5TienoXiZYpLy7h1RjKZBwqZdfMAmkYG212SUh5185ltWb8rl+fmradT0wjO146vqk2PwL3MY3NXs2hTDk9f1kM7A1L1kojwxKU96BUXyT8+TGHdrly7S3IsDXAv8lHSNt5euIWbzojnkt5xdpejVK0JDnAxZUwioUH+3PROEvvyi+wuyZE0wL3Eim37+OdnaZzWPoYJQ6o8Yp1SjtU0MpjX/9qHXfsLuH3mckrL9EvNk6UB7gWycwu55b1kYsODePnKU/B36W5RvqFP64Y8MqIbP2/Yzb//t87uchynKkOqtRSRBSKyWkRWicid7ukPich2EUlx34bVfrn1T1FJGX+fsYy9+UVMGdOH6LBAu0tSqk6N7teKq09txes/bmRu6g67y3GUqpyFUgLcbYxZJiIRQLKIzHM/9rwxZnLtlVf/PfblapZszuHF0Ql0bxFpdzlK2eLBi7qxdlcu936USvvG4XRu2sDukhzhhEfgxpidxphl7t9zsQY01mu6PWBW0jbecX9pqZfJK18W6O/Ha1efQkSwPze/m6wDQVTRSTW2ikgboDew2D3pNhFJFZE3RaShp4urz9K272eSfmmp1GGNGwTz2l9PYce+Q9z5oX6pWRVVDnARCQc+Bu4yxhwAXgPaAQnATuDZ4zxvnIgkiUhSdnZ2zSuuB/bnF/O3GcnEhAXy0uje+qWlUm59Wkfz4EXd+GFdNi98t97ucrxelZJDRAKwwnuGMeYTAGNMpjGm1BhTBvwX6Hes5xpjphpjEo0xibGxsZ6q27HKygz/mJXCrv0F/OfqU4gJD7K7JKW8ytWntuKKxDhenp/Od6sz7S7Hq1XlLBQBpgFrjDHPVZrerNJslwBpni+v/nn1h3S+X5vFAxd25ZRW2uqk1NFEhEdGdKd7iwaMn5XC1j06uv3xVOUI/DRgDDDoqFMGnxGRlSKSCpwNjK/NQuuDnzdk8+y89Qzv1Zwx/VvbXY5SXis4wMVrV/fBT4Rb3kumoFi7nz2WE55GaIz5BThWX6Zfeb6c+mv7vkPcMXM5HRqH89RlPbA+2CiljqdldCgvjErguulL+decNJ4Z2cvukryOfntWB4pKyrh1xjKKSw2v/7UPoYHaCaRSVXF258bcPqg9s5Iy+Dg5w+5yvI4GeB144qs1rNi2j8mX96RtbLjd5SjlKHcN7kj/ttFM+iyNDZnac2FlGuC17OuVO5n+22auPy2eId2bnfgJSqkjuPyEl0b3JizIn1tnLCO/qMTukryGBngt2rLnIPfNTqVXyygmDtWLdZSqrsYNgnlxdALp2XlM+ixNh2Nz0wCvJYUlpfz9/WWIwCtX9ibQX//UStXEae0bcec5Hfhk2XY+StL2cNAArzWPf7mGtO0HmHx5L1pGh9pdjlL1wu2DOnB6+0Y8MCeNNTsP2F2O7TTAa8GXqTt5Z+EWbjw9nvN0vD+lPMblJ7wwOoHIkABunbGMvELfbg/XAPewzbsPMuHjVHq3imKCtnsr5XGNwoN4+crebNlzkH9+utKn28M1wD2osKSU22Yuw+UnvHLVKQRoJ1VK1YpT28YwfnBH5qTs8On2cE0YD3ryq7WH271bRIXYXY5S9dqtZ7fnL+1i+Nfnvnt+uAa4h3yTtuvw+d7ndm1idzlK1XsuP+GFUQmEBfrz9/eXcajI9/pL0QD3gIy9+dw3ewU94yL1fG+l6lDjBsE8PyqB9Zl5PDJ3td3l1DkN8BoqKS3jrg9SKDPwsp7vrVSdO7NjLLec1Y6ZS7b63KDImjY19PL8dJK27OWxi7vTOibM7nKU8kl3n9eR3q2iuP/jlT7Vf7gGeA0s+T2Hl+dv4NLeLbi4tw5KrJRdAlx+vDS6NyJw+wfLKS4ts7ukOqEBXk3784u564PltIwO5ZGLu9tdjlI+r2V0KE9e2pMV2/bx3DzfGE9TA7wajDFM+DiVrNxCXhrdm/Ag7d9bKW9wQc9mjO7bktd/3Mhv6bvtLqfWVWVMzJYiskBEVovIKhG50z09WkTmicgG90+fGeDx/SVb+WbVLu49vxO9WkbZXY5SqpJ/XdSVto3CuOvDFHIOFtldTq2qyhF4CXC3MaYr0B/4u4h0BSYC3xtjOgDfu+/Xe+szc3nki9Wc0aERN53R1u5ylFJHCQ305+UrT2FffjH3zU6t15fanzDAjTE7jTHL3L/nAmuAFsAI4G33bG8DF9dSjV6joLiUO2YuJzzIn2ev6IWfn45rqZQ36tq8AROGdua7NZm8t3ir3eXUmpNqAxeRNkBvYDHQxBiz0/3QLuCYlx+KyDgRSRKRpOzs7JrUartnvlnH2l25TL68F40jgu0uRyn1J677SxvO6hjLY3NXs76eXmpf5QAXkXDgY+AuY8wRHfEa6zPKMT+nGGOmGmMSjTGJsbGxNSrWTj+uz+bNX39n7IDWnN25sd3lKKVOwM9PmHx5LyKC/blj5nIKiuvfpfZVCnARCcAK7xnGmE/ckzNFpJn78WZAVu2UaL+cg0Xc89EKOjYJ5/5hXewuRylVRbERQfx7ZC/rk/P/1tldjsdV5SwUAaYBa4wxz1V66HNgrPv3scAcz5dnv/JTBvfnF/PCqN4EB7jsLkkpdRLO7tyYMf1b88Yvv/PLhvp1amFVjsBPA8YAg0QkxX0bBjwFnCsiG4DB7vv1zswl25i3OpP7hnSia/MGdpejlKqG/xvWhXaxYdz9UQp769GphVU5C+UXY4wYY3oaYxLct6+MMXuMMecYYzoYYwYbY3LqouC6lJ6VxyNzV3FGh0Zcf1q83eUopaopJNDFi6N7k3OwiP+rR6P46JWYx1FUUsb4D1MICXAx+XI9ZVApp+veIpJ/nNuJr9N28fGy7XaX4xEa4Mfx0vcbWLl9P09e2pMmDfSUQaXqg3FntuXU+GgenJNWL3ot1AA/huQtObz6QzqX94ljSHcdVV6p+sLlJzw3KgE/P2H8rBRKHN5roQb4UfIKSxj/4QpaNAzhweHd7C5HKeVhLaJCeOzi7iRv2ctrP2y0u5wa0QA/yqNfrCZjbz7PXZGgvQwqVU+NSGjB8F7NefH7DazM2G93OdWmAV7Jt6t28WHSNm4+qx1920TbXY5SqhY9OqI7jcKDuOtD516lqQHutjuvkPs/WUnXZg0YP7ij3eUopWpZZGgAky/vxcbsgzz19Vq7y6kWDXCsqy0nfryS3MISnh+VoAMTK+UjTu/QiGv/0obpv23m5w3O62xPkwr4KCmD79Zkct/5nejUNMLucpRSdWji0M60iw3j3o+sLjOcxOcDfFtOPg9/sYr+baP1akulfFBwgIvnRyWwO6+Qf32eZnc5J8WnA7yszHD3RysQEb3aUikf1jMuijvO6cCclB3MTd1hdzlV5tMB/uavv7Pk9xwevKgrcQ1D7S5HKWWjWwe2I6FlFJM+SyPrQIHd5VSJzwb4hsxcnvnfOs7t2oSRfeLsLkcpZTN/lx/PXtGLguJSJn7ijA6vfDLAi0vLGD8rhfAgf564pAdWl+dKKV/XLjacCUM6M39tFh8lZdhdzgn5ZIC/Mj+dtO0HeOKS7sRGBNldjlLKi4wd0Ib+baN5ZO5qtuV4d4dXPhfgqRn7eGVBOpf0bsGQ7s3sLkcp5WX8/IR/j+yFMYZ7Z6+grMx7m1KqMqTamyKSJSJplaY9JCLbjxqhx+sVFJfyj1kriA0P4iHtqEopdRwto0P510VdWbQph+m/bba7nOOqyhH4dGDIMaY/X3mEHs+WVTuem7ee9Kw8nhnZk8iQALvLUUp5sSsSW3JO58Y8/c1a0rPy7C7nmKoypNpPgOOHS1u6OYf//ryJq09txZkdY+0uRynl5USEJy/rQWigi3/MSqHYC/sOr0kb+G0ikupuYmnosYpqQX5RCfd8tIK4hiH837AudpejlHKIxhHBPH5JD1Iz9jPlR+/rO7y6Af4a0A5IAHYCzx5vRhEZJyJJIpKUnW1PZzFPfb2WrTn5/HtkL8K0j2+l1EkY1qMZF/Rsxovfb2DtrgN2l3OEagW4MSbTGFNqjCkD/gv0+5N5pxpjEo0xibGxdd908Vv6bt5ZuIXr/hJP/7Yxdb5+pZTzPTK8Gw2CA7jnoxVe1ZRSrQAXkcrn310CeGUPMHmFJdw7O5X4RmHce34nu8tRSjlUTHgQj13cnbTtB7yqKaUqpxHOBBYCnUQkQ0RuAJ4RkZUikgqcDYyv5Tqr5Ymv1rBj/yEmX96TkECX3eUopRxsaI9mXOhuSlmz0zuaUk7YIGyMufIYk6fVQi0e9fOGbN5fvJWbzoinT2sdHk0pVXOPjOjOok17uHvWCj77+2m2D/5SL6/EPFBQzITZqbSLDePu87TpRCnlGdFhgTxxSQ9W7zzAKwvS7S6nfgb4E1+uYdeBAiZf3ovgAG06UUp5znndmnJJ7xb8Z0G67SPa17sA/2FdFh8s3cZNZ7aldyuvPj1dKeVQD13UjZiwQO6dbe9ZKfUqwA8UFHP/Jytp3zhcR5ZXStWayNAAHr24O2t35TL1p0221VGvAvzJr9aQqU0nSqk6cH63pgzr0ZQXv9/Axmx7+kqpNwH+y4bdzFyyjZvOaEtCyyi7y1FK+YCHhncjJMDFxI9Tbel2tl4EeF5hCRM+TqVtozDGn6tNJ0qputE4Iph/XtCFpZv38t7iLXW+/noR4E9/vZYd+w/xzMie2nSilKpTl/eJ48yOsTz51Vq27qnbEXwcH+CLNu3h3UVbuPYvbUhsoxfsKKXqlojw1KU9cPkJ931ctyP4ODrADxWVMuHjVFpFh2pfJ0op2zSPCmHSBV1YtCmHGXXYlOLoAJ/87Tq27Mnn6ct6Ehqo3cQqpewzqm9LzujQiCe/XkvG3rppSnFsgCdv2cubv/7OmP6tGdBOu4lVStlLRHjy0h4A/PPTNIyp/aYURwZ4QXEp981eQfPIECYM7Wx3OUopBUBcQ6s598f12XyWsr3W1+fIAH95/gY2Zh/kyUt7EK4j7CilvMg1A9rQu1UUj3yxmj15hbW6LscFeNr2/bz+46bDp+4opZQ3cfkJT1/Wk7zCEv71+apaXZejAry4tIz7ZqcSExbIpAu62l2OUkodU8cmEdx5Tge+TN3JFyt21Np6HBXgU37cyOqdB3j04u5EhgbYXY5SSh3XLWe1o1dcJA/MSSMrt6BW1lGVIdXeFJEsEUmrNC1aROaJyAb3z1rvt3VDZi4vfZ/OBT2bcX63prW9OqWUqhF/lx/PXtGL/KJS/u+T2jkrpSpH4NOBIUdNmwh8b4zpAHzvvl9rSssM932cSliQi4eHd6vNVSmllMe0bxzBfed34rs1mXydtsvjy6/KmJg/iUiboyaPAAa6f38b+AGY4MnCKpv+22aWb93HC6MSaBQeVFurUUopj7vutHiCAlyc06Wxx5dd3TbwJsaYne7fdwFNjjejiIwTkSQRScrOzq7WysICXVzYsxkjEppX6/lKKWUXl58wpn9rgvw939GeVKVdxn0EPtcY0919f58xJqrS43uNMSdsB09MTDRJSUnVr1YppXyQiCQbYxKPnl7dI/BMEWnmXnAzIKsmxSmllDp51Q3wz4Gx7t/HAnM8U45SSqmqqspphDOBhUAnEckQkRuAp4BzRWQDMNh9XymlVB2qylkoVx7noXM8XItSSqmT4KgrMZVSSlXQAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYfSAFdKKYc64YAOf0ZENgO5QClQcqxBN5VSStWOGgW429nGmN0eWI5SSqmToE0oSinlUDUNcAN8KyLJIjLOEwUppZSqmpo2oZxujNkuIo2BeSKy1hjzU+UZ3ME+DqBVq1Y1XJ1SSqlyNToCN8Zsd//MAj4F+h1jnqnGmERjTGJsbGxNVqeUUqqSage4iISJSET578B5QJqnClNKKfXnatKE0gT4VETKl/O+MeYbj1SllFLqhKod4MaYTUAvD9ailFLqJOhphEop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VAa4Eop5VCeGNRYOZkxUFoMZSVQVgxlpZXul99KKx4vKYLSQigpgOJDUFxgPWZKwZQBAuIHGGvZpsx6rMz9eEmh9fyy0orHy4qtdZYWVVrnUc8rX44pcz/PVGyDiHVD3MsrsX6Kn3Urn1ZWUjENcS+/pGJZ4gd+/u6by33fZT12+G9QUlGP9aQ/Ps/PBeKqqBkB/2DwD3Ivq8Ta3pLyv1+x+7kBEBAMQREQ1MCaJkctv3w7wb2uAGt6+baU/x1Li9zzBIArEAJCrJt/cMUy/PzB5X7cP6jicVeAe7muir+Nn6tivsAwCAh1L0fZSQPcLmVlVgiWFlqhVlJgvZhL3LeiPCg6aE0rLbRekCWFVmgeDs9D1rTyAC0pqDRP4VH3D1nLMADloe0Oarv5BVjBcDgE/StC0M/P+lkevOXBSuXwMBWhWv5cxJpeVmYtw8/fWg7GCmNMxbrK5zVllYK69Mg3DFdApSB1Hbn+8jeaym92ptRds3ud5fujfHtd/u5QD7aC0bjfOEsKoOAAFOa6942pqOVk/6Zg7eNaIVbguwKtbQgIhoCwijeKgFDrb1b+96DSm2RwFIQ1sn76B1rLKH9zKH+j8w+xlhkYBoHhFX+n8v0gftbvPv5GogF+IsZYAViY674dsMK1PECL8ipecIXun8X57iNN91FW0UEozLPmLcy17tfohSXWP25AMLiCrDAQV8ULICAEAkMhNNp9ZBVa8QIoP/py+Vv3y8Ok/Eiu/AVS+SiscrD6B1Uc0ZWvq3yeykFYfmQq4g5idyD7B1o1Hz669N0X30kxld5grAnucHR/aqq8nw7vZyo+YZUcqnjzN4bDb26HDyAKrXnK/2/Liq3Hy5dTVlLpICLf+h8uOuie5j74KJ9eUgB5u6zlVP40A1at2esgf4/1eqgp/2AIi7XeDAJDrf/1wLCK4A+KqPhEExwJwQ2s34MiICi84rURGGb9zzuMbwS4MVCwD/Jz4NA+KNgLBfuPfTu0z5q3/GfB/qofpQaEWv8YAaHuoHMfIQSGQ3gT67HA8IqPoP5BFTdXkBXI5Udlh+cLOfIIpfy+Bp9vqfxGeLLP8w+0bsGRtVNbdZVWajor//Rx+JNj+RtCfsUBU1kxlJY3YZVaz8vPgYO74dBe9/x5kJcFRbnWQVNhbtUPlgIjILSh9WZQHvIhURASbU0PamC9LkOirNdzeGMIbWS9cdikRgEuIkOAFwEX8IYx5imPVPVnigusd+9DOe5ArvTz0D5rRx7aZx0NF+y3du7B7D/fiX7+7nfnKGvnBEdCVOuK34MauN+5I6137cAw98dFd9AGN7B2vss33g+V8ghXgPuot5YDsKTQ/Sn5gJUNRbkVn6jLP5UUHazIkYL91mP7MyAzzZpefPD4yw8IhdAY65NAeGPrFtHMCvmwWOux0BiIauXxsK924oiIC/gPcC6QASwVkc+NMas9VdxhPz4Dy9878ceugDB36EZZoRrRDJr2hPBY6w8ZEg0hDY+cJzjS59vRlKrX/IOsDAiPrf4ySgrdzaC57qP+bMjLtA4Q8/e4DxSzYP922L7Mery83b/cVR9Bx/NqtClHq8khYz8g3T02JiLyATAC8HyAhzeBlqdaX3yUv5uFRrs/2kRb90MaVnzLr5RSnlTe1BkWAw3bnHj+0hIrxPPdAZ+/B5p5fgjhmgR4C2BbpfsZwKlHzyQi44BxAK1ataremvqMtW5KKeUELn9o0My61aJav5DHGDPVGJNojEmMja3BRxillFJHqEmAbwdaVrof556mlFKqDtQkwJcCHUQkXkQCgdHA554pSyml1IlUuw3cGFMiIrcB/8M6jfBNY8wqj1WmlFLqT9XoxGVjzFfAVx6qRSml1EnQ3giVUsqhNMCVUsqhNMCVUsqhxBhz4rk8tTKRbGBLNZ/eCNjtwXK8hW6Xs+h2OUt92a7Wxpg/XEhTpwFeEyKSZIxJtLsOT9PtchbdLmepr9tVTptQlFLKoTTAlVLKoZwU4FPtLqCW6HY5i26Xs9TX7QIc1AaulFLqSE46AldKKVWJBrhSSjmUIwJcRIaIyDoRSReRiXbXUx0i0lJEFojIahFZJSJ3uqdHi8g8Edng/tnQ7lqrQ0RcIrJcROa678eLyGL3PvvQ3WOlo4hIlIjMFpG1IrJGRAbUh/0lIuPd/4NpIjJTRIKduL9E5E0RyRKRtErTjrl/xPKSe/tSReQU+yr3HK8P8Epjbw4FugJXikhXe6uqlhLgbmNMV6A/8Hf3dkwEvjfGdAC+d993ojuBNZXuPw08b4xpD+wFbrClqpp5EfjGGNMZ6IW1fY7eXyLSArgDSDTGdMfqSXQ0ztxf04EhR0073v4ZCnRw38YBr9VRjbXK6wOcSmNvGmOKgPKxNx3FGLPTGLPM/XsuVhi0wNqWt92zvQ1cbEuBNSAiccAFwBvu+wIMAma7Z3HcdolIJHAmMA3AGFNkjNlHPdhfWL2QhoiIP9aQ8Dtx4P4yxvwE5Bw1+Xj7ZwTwjrEsAqJEpHbHO6sDTgjwY4292cKmWjxCRNoAvYHFQBNjzE73Q7uAJnbVVQMvAPcBZe77McA+Y0yJ+74T91k8kA285W4aekNEwnD4/jLGbAcmA1uxgns/kIzz91e54+2fepcj4IwAr1dEJBz4GLjLGHOg8mPGOqfTUed1isiFQJYxJtnuWjzMHzgFeM0Y0xs4yFHNJQ7dXw2xjkbjgeZAGH9shqgXnLh/TpYTArzejL0pIgFY4T3DGPOJe3Jm+Uc5988su+qrptOA4SKyGat5axBW23GU+yM6OHOfZQAZxpjF7vuzsQLd6ftrMPC7MSbbGFMMfIK1D52+v8odb//UmxypzAkBXi/G3nS3C08D1hhjnqv00OfAWPfvY4E5dV1bTRhj7jfGxBlj2mDtm/nGmKuBBcBI92xO3K5dwDYR6eSedA6wGofvL6ymk/4iEur+nyzfLkfvr0qOt38+B65xn43SH9hfqanFuYwxXn8DhgHrgY3AP+2up5rbcDrWx7lUIMV9G4bVXvw9sAH4Doi2u9YabONAYK7797bAEiAd+AgIsru+amxPApDk3mefAQ3rw/4CHgbWAmnAu0CQE/cXMBOrHb8Y6xPTDcfbP4Bgnc22EViJdRaO7dtQ05teSq+UUg7lhCYUpZRSx6ABrpRSDqUBrpRSDqUBrpRSDqUBrpRSDqUBrpRSDqUBrpRSDvX/A5ZlWGDy2M8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df_day1.plot();" ] }, { "cell_type": "code", "execution_count": 3, "id": "0e73f98b-0ce3-46a2-9d04-fe42fe2c3f4d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEGCAYAAABxfL6kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA19ElEQVR4nO3dd1wU1/7/8dehiQpWEBVEBAtiV8QSo8aYWJKY3JhiNDGxm8SUG296b7+bm3rTTK4aY+8xsaZootHYAUUFG6BIkao0acvu+f0B5kuMCLsswi6f5+PhQ3ZmdvYzDrwdzpw5R2mtEUIIYT8caroAIYQQ1iXBLoQQdkaCXQgh7IwEuxBC2BkJdiGEsDNONfXBHh4e2s/Pr6Y+XgghbFJYWFi61trzWtvUWLD7+fkRGhpaUx8vhBA2SSkVV9E20hQjhBB2RoJdCCHsjAS7EELYmRprY78ag8FAQkICBQUFNV3KdeXq6oqPjw/Ozs41XYoQwg7UqmBPSEjA3d0dPz8/lFI1Xc51obUmIyODhIQE2rVrV9PlCCHsQIVNMUqpBUqpVKXUsXLWT1BKHVFKHVVK7VFK9bC0mIKCApo3b15nQh1AKUXz5s3r3G8pQojqU5k29oXAyGusPwMM0Vp3A94G5laloLoU6pfVxWMWQlSfCoNda70TuHCN9Xu01hdLX+4DfKxUmxBC1EpVGe58a1QKSZn5Vqzm76zdxj4F+LG8lUqp6cB0AF9fXyt/tBBCVK8Tydm8tO4oTg4OLJ3aDxenihs9Tibn8MX2aE6n5FBUbCI2/RJdvRux6Ykbq61Oq3V3VErdREmwP1/eNlrruVrrYK11sKfnNZ+IrTFubm4VbpOdnY2Pjw+zZs36c9nQoUPp1KkTPXv2pGfPnqSmpgJQWFjI/fffT/v27enXrx9nz56trtKFENWksNjIx7+c5PbP/iA6NZcDZy/w6a+nrrqtyaSJTMoiKimbk8k5PPLtATZGJHEiOYfY9EsA1Hd2rNZ6rXLFrpTqDswHRmmtM6yxz9rs1VdfZfDgwX9bvmzZMoKDg/+y7JtvvqFp06ZER0ezcuVKnn/+eVatWnW9ShVCWMHza4/ww+Ek7u7lzSu3B/Hej8f5akcMQzu1oK9fMwDyior5+JdTzP/jTIX7e7B/22qtt8rBrpTyBdYBD2mtr/5fmAXe3BhJVFK2tXYHQFDrRrx+R5cq7SMsLIyUlBRGjhxZqbFu1q9fzxtvvAHAPffcw6xZs9Bayw1TIWzEqZQc1kckMWOIPy+O6gzAa3d0YV/sBf656jCLJoew+mA8S/bFkVdkvOo+Bnf05PMHetH33W0UFZsY3tmrWmuuMNiVUiuAoYCHUioBeB1wBtBafw28BjQH5pSGVbHWOvjqe7NtJpOJ2bNns3TpUrZt2/a39ZMmTcLR0ZGxY8fyyiuvoJQiMTGRNm3aAODk5ETjxo3JyMjAw8PjepcvhLDAZ7+epoGzIzMHB/y5zK2eE/++uxsT5u/n5o9+/8v2jw0NYF14IhfyivhyfG8GtffA2VHh5OjAnheGkZZTSMN61fsIUYV711o/UMH6qcBUq1VUqqpX1tVhzpw5jB49Gh+fv3f8WbZsGd7e3uTk5DB27FiWLFnCxIkTa6BKIYS1nE7JYfPR8zw6JICmDV0AKDaaWBuWwCfb/q+Bwt3ViUKDiZFdW/LcyEBmDWtPZp6B1k3q/2V/Hm718HCrV+1116onT2u7vXv3smvXLubMmUNubi5FRUW4ubnx3nvv4e3tDYC7uzvjx4/nwIEDTJw4EW9vb+Lj4/Hx8aG4uJisrCyaN29ew0cihKiMz36Lpr6zI1Nv9Adgf2wGr/xwjNOpufTybcIX43uTkVvEEyvCaVjPidfuCAKggYsTDVxqLl4l2M2wbNmyP79euHAhoaGhvPfeexQXF5OZmYmHhwcGg4FNmzYxfPhwAMaMGcOiRYsYMGAAa9euZdiwYdK+LoQNiE7NYdORJGYMDqBZQxc2HUnin6sO07pJfb5+sDcjurT882d57cyBODqo63I1XhkS7FZQWFjIiBEjMBgMGI1Ghg8fzrRp0wCYMmUKDz30EO3bt6dZs2asXLmyhqsVwvYVGIysDUtg/q5YlFK8fWdXBnWo2n2rAoORDYeTOBSfSUxqLieSs6nv7Mi0G9uxeO9ZXt8QSXDbpsx/uC+N6/91wL4ebZpU6bOtTVXlCaqqCA4O1lf2Kjl+/DidO3eukXpqWl0+diEqKyvfwNJ9cXy7+wzpuUX0aNOEnHwDsemXuD+4DS/d1vlvoVuRS4XFLNsfx7xdZ0jLKaRJA2daNnIlPbcI32b1qe/iyO7oDIZ39uKL8b1wreY+6BVRSoVV1EFFrtiFEDbh91NpzFoeTk5BMYM7evLokAD6+zejsNjEf7edZu7OGHacSuXtO7tyS5DXVZs84y/ksepgPOm5heQUFJNTWMyRhEwy8wzc0L45n43rRaP6TkxdFEp6biEX84ro6OXOE8Pa89TNHXBytI0pLCTYr+Lo0aM89NBDf1lWr1499u/fX0MVCVG3/XQsmSdXHCKghRsf3NOdrt6N/1zn6uzIC6MCGd2tJc+tPcL0JWF09HJjXF9f7u7tTZMGLsRfyOOL36L5LjwBgOZuLrjVc8LN1ZlB7T2YPKgdvX2bsjUqhSmLDtK4vjOLJ4cQ7Ne0Rm+CWqrWNcUEBgbWuZuLWmtOnDghTTFCXMX3hxL415ojdPdpzMJHQmjcoPymlqJiE+vCE1hx4BwRCVm4ODnQ168p+2Mv4OCgGB/iy6NDA/Bq5PqX9+UXGVm45yzv/3yCbt6NmT8xmBZXbFNb2FxTjKurKxkZGXVqTPbLE224utbObyIhatKy/XG88sMxBvg3Z97E4Aof7HFxcmBciC/jQnw5lpjFVztiiEjIZHw/Xx4b2p6Wjf/v5yw9t5Dd0en8dCyZ7SdTKTCYGNW1JR/f15P6LjXbjl5VtSrYfXx8SEhIIC0traZLua4uT40nRF1VYDCScDGfzLwiLuYZuHipiOPJ2Xy7+yzDAlswZ0LvSt201FpzKD6TjRFJbD5yntScQhq4OBJ69iJvb4qiUX0nYtIuEZ2ay4VLRQC0cK/HvX3aMKprSwYE2MdFZa0KdmdnZ5keTog6pMBgZOm+OObsiPkzaMu6s2drPrinR6WGx1154Bxf7ogm/kI+Lk4O3NTJk75+zUjKLOBMei6RSVlkFxTj79GQEV286NDCnR5tGtOrTVMcHGw/zMuqVcEuhKgbDEYTq0Pj+fzXaJKzCxjU3oOxfbxp1rAeTRs407SBC00bltzgrIjWmo+3nuLz36IJbtuUp27uyK1dvGjkWncnh5dgF0JcN1prNh45z4c/n+TchTz6tG3KJ/f3ZECAZcNsGE2aV344xooD5xjXtw3v3NXVZrokVicJdiHEdZGVZ+Cl74+y+eh5glo14ttH+jK0k6fFbdoFBiNPrzzMT5HJPH5TAP+6tZNdtI9bgwS7EKLa7Y3J4JnVh0nLKeS5kZ2YMTgAxyq0a5/PyufplYfZf+YCr94exJRBcm+uLAl2IUS1KSo28fHWU/xvZwx+zRuy7rGBdPdpYvH+jCbNkr1n+fCXUxSbTPz3/p7c1cvbegXbCQl2IYTVGYwmtkWl8MX2aCKTsnkgpA2v3h5Upac4I5OyeOn7Y0TEZ3JjBw/evasbvs0bWLFq+yHBLoSwmsTMfFYeOMfKg/Gk5RTi3aQ+Xz/Yh5FdW1q0v8v90teExrM6NIGmDZz5dFxPxvRoLe3p1yDBLoSoFKNJszUqhbVhCRSbTNR3dqS+syOuLiV/n0m/xI6TqWhgWKcWTOjvy5COLSxqS4+/kMcPhxJZdyiRM+mXqOfkwP192/DciE40aeBi/YOzMxLsQohryisqZk1oAgt2nyEuI4/WjV3xdK9HksFIvsFIfpGJAoMRd1cnHr+pPff3bYNPU/ObSFKyC9hy9Dybj5wnNO4iAP3aNePRIQGM6tYS9zrcL91cEuxCiKtKzS5g4Z6zLNt/jqx8A718m/D8yEBuDfKyWl/xtJzCP8P8YNwFtIbAlu7MvqUjd/Xypk0zaUO3hAS7EOJv/jidzqPLwrhUWMyILi2ZemM7+rRtZpV9FxiM/Ho8le/CE/j9VBpGk6aTlzv/HN6R0d1a0b6Fm1U+py6TYBdC/MXSfXG8viGSDi3cmDOhN/6eVQ9ak0kTdu4i3x9KZFNEEtkFxXg1qse0G/25u7c3Hb3crVC5uEyCXQgBlNwcfWdz1J8jKn72QK9KjdVSHq01kUnZbIxIYmNEEklZBbg6OzCyS0vG9vFhYIBHlR5SEuWTYBdCkFNg4MkVh9h+Mo0pg9rx0ujOFoduVr6BZfvjWBuWQGzaJZwcFDd28ODZkZ24Jahllf6zEJUj/8JC1HEJF/OYsjCU6LRc3rmrKw/2b2vRftJzC1nwxxmW7I0jp7CYfu2aMXWQP6O6tqRpQ+mieD1JsAtRR+UUGJi3M5b5f5zB0UGxaFIIgzp4mL2fpMx85u6MZeXBcxQWmxjdtRWPDg34y7yk4vqSYBeijrk8ucWX26O5mGfgtu6teG5EJ9o2b1jue/KLjPxvZwynU3PJzjeQnW8gK99AdkExmXlFOCjFXb28eXRoAAFWuNkqqkaCXYg6wmjSrAtP4L/bTpOYmV/S7j2iU4WDckUmZfHUysNEp+bi79GQRvWdadLABd/mDWlc3wlPN1fG9vG26KEkUT0k2IWoA6JTc3h61WGOJWbT3acx79/TnRvaX7vZxWTSzP8jlg9+Pkmzhi4sndLPoqYacf1JsAthx7TWLNkXx7ubj9PAxZHPHujFHd1bVTiA1vmsfGavjmBPTAYju7Tk33d3kxugNkSCXQg7lZpTwHNrj7DjZBpDOnrywT3dadHI9Zrv0VqzISKJ19ZHYjCaeH9sd+4N9pGRFG2MBLsQdmhrVArPf3eES4XFvDmmCxMHtK0wnI8kZPL2pigOnr1ID5/G/HdcL9p5lH9DVdReFQa7UmoBcDuQqrXuepX1CvgUGA3kAY9orcOtXagQomKXCot5Z/NxVhw4R1CrRnw6ricdKnhcPzmrgPd/PsG68EQ83Fx47+5u3BvcRp4KtWGVuWJfCHwBLC5n/SigQ+mffsBXpX8LIa6jA2cu8K81EcRfzGPGYH+eubUj9Zwcy90+v8jIvF2xfLUjBqNJM3NIAI/fFCDD49qBCoNda71TKeV3jU3uBBZrrTWwTynVRCnVSmt93lpFClHXGE0ag9GEwWiioYsTDte4ei4wGPl46ynm7YqlTdMGrJo+gJB25Y/EqHXJhBlvbowiMTOf0d1a8sLIzjLNnB2xRhu7NxBf5nVC6TIJdiEqYdORJN7cGEVeYTGG0kDX+v/WN23gzKAOngzp6MngDh5/uQF6NCGLZ1Yf5nRqLhP6+fLS6M40vMZYLOcy8nhjYyS/nUilo5cbK6f3p79/8+o8PFEDruvNU6XUdGA6gK+v7/X8aCFqpejUHJ5dc4R2Hg0Z0KM1To4KF0cHnBwccHJUODkoTibnsPN0OhsjkoCSiSiGdPTEwUExb2cszd1cWDQ5hCEdPcv9nAKDkf/9HsucHdE4OSheua0zDw/0w9lKE2aI2sUawZ4ItCnz2qd02d9orecCcwGCg4P11bYRoq7ILzLy2LJwGrg48u2kvnhdoyuiyaQ5npzNzlPp7DyVxoLdZzAYNXf1bM2bY7rSuMHV28Wz8gz8fjqNj345SVxGHrd3b8UrtwXRsvG1uz0K22aNYN8AzFJKraTkpmmWtK8LUbE3NkRyOjWXRZNCrhnqAA4Oii6tG9OldWMeHRrApcJiUnMK/9YdMbewmINnL7A3JoM9MelEJmWjNfh7NpQnR+uQynR3XAEMBTyUUgnA64AzgNb6a2ALJV0doynp7jipuooVwl58fyiBVaHxPH5TAIOv0YRSnob1nGhXpi09MimLdzYd5+DZCxSbNC6ODvTybcLTN3dkQEBzevk2kWaXOqQyvWIeqGC9Bh63WkVC2Lno1Fxe/v4YIX7N+OfwjlXaV2Gxkc9/jebr32No0sCFGUP8GRjgQW/fptR3Kb+ro7Bv8uSpENdRgcHIrOXhuDqXjNviVIWr6LC4izz/3RGiU3MZ29uHV2/vTJMGMp6LkGAX4rp6c2MkJ5JzWDipr8U3MPOKivnw51N8u+cMrRq5snBSX4Z2amHlSoUtk2AX4jpZfziRFQfieXRogEVBrLVm+8lU3tgQxbkLeTzUvy3PjwqUOUTF38h3hBDVyGTShJ27yPrDiawNSyC4bVNm32J+u3pUUjbvbolid3QG/h4N5cEicU0S7EJYmdaaE8k5rD+cxMaIJBIz83F1duCWoJa8eltns9rVU7ML+OiXU6wOi6dxfWdevyOICf3a4uIkPVxE+STYhbCSzLwilh84xw+HEjmVkoujg2Jw6fRztwR5XfNR/yvlFxmZvyuWr36PwWA0MeWGdjwxrEO5DyIJUZYEuxBVFH8hj2/+OMOqg/HkG4z09WvK23d1ZXTXljR3q2fWvhIz81mx/xwrD8aTnlvIyC4teWFUIH4yLrowgwS7EBY6lpjF/3bGsuXoeRQwpmdrpg/2J7BlI7P2YzJpfj+dxrJ9cfx2IhUNDOvUgumD/ekn7ejCAhLsQphBa80f0el8/XsMu6MzcKvnxJRB7Zh0gx+tGtc3a1/ZBQaW7TvH8gNxxF/Ix8PNhUeHBvBAiC8+TWUIXWE5CXYhKiks7gL/+ekkB85coIV7PV4YFcj4fr40smBiiiMJmTy2LJyEi/n0a9eM50YEMqJLS7kpKqxCgl2IChw/n82HP5/k1xOpeLjV480xXRgX0uaasxOVR2vNoj1neXfLcVq4u/LdowPo07b8STGEsIQEuxDliMu4xMdbT7EhIgn3ek48O6ITk27wo4GLZT822QUGXvjuCFuOJnNzYAs+uq+HDAEgqoUEuxBXyCsq5j8/nmDZ/nM4OSpmDglg5uCAKnU1PJaYxePLS5peXhwVyLQb/a853Z0QVSHBLkQZxxKzeHLlIc6kX2JCP1+eHNbhL1PRmUtrzdL953h7YxTNGrqwanp/gv2k6UVULwl2ISgJ4AW7z/KfH0/QtKEzy6b0Y2B7yyel0Fqz63Q6H/1ykoiELAZ39OST+3qY3a9dCEtIsIs6Lz23kH+tiWDHyTSGd/bi/Xu606yh5W3f+2Mz+OiXUxw4ewHvJvV5f2x37unjI00v4rqRYBd12s5TaTyzOoLsAgNv39mFB/u3RSnLAvhwfCYf/XKSXafT8XSvx1t3duH+vpb1nhGiKiTYRZ0Uk5bL0n1xfLv7LB293Fg6NcTsJ0YvOxyfyRe/RbPteArNGrrw8ujOPNi/rcxgJGqMBLuoE4qNJsLPZbLteArbolKITb8EwIP9fXnltiBcnc0LYa01O06m8fXvMew/c4FGrk7MvqUjkwa1k/HRRY2T70BhlwxGE8lZBRxLzGLr8RS2n0jlYp4BZ0dFf//mPHKDHzd39sK7iXnDABiMJjYcTmLuzlhOpuTQqrErr9zWmXEhvhLootaQ70Rh0+Iv5LE3NoOEi/kkXMwj4WI+iRfzOZ+Vj0mXbNO4vjPDAlswvLMXgzt64G7BEAC5hcWsPHCOBX+cISmrgE5e7nx8Xw/u6NEa5yrMWypEdZBgFzYrNi2Xu77cTXZBMUpBq0au+DRtQL92zfBpWh+fpg3w92xIzzZNLJ40Oj23kEV7zrJ4bxxZ+Qb6+zfj3bu7MbSjp8U3WYWobhLswiZlFxiYujgUJ0cHNj0xiI5e7lYdQOtcRh7zdsWyOjSeIqOJW4O8mDkkgF6+Ta32GUJUFwl2YXOMJs2TKw5xLiOPZVP70dW7sdX2HZWUzde/x7DpSBKODoq7e/kwfYg/AZ5uVvsMIaqbBLuwOe//dIIdJ9P4f//oZrWJKIqNJv7z0wnm7TqDWz0npt3oz+RB7fCqwnACQtQUCXZhU74LS+B/O2OZOKAt4/v5WmWfGbmFPLHiEHtiMniwvy/PjgikcX2ZW1TYLgl2YTPCz13kxXVHGeDfnFdvD7LKPo8mZDFzaRhpuYV8eG8P7unjY5X9ClGTJNiFTUjOKmDGkjC8GtdjzoTeVuliuCY0npd/OIanWz2+mzmQbj7Wa6sXoiZJsItar8BgZPqSUPIKi1k65QaaVmGALoCiYhPvbI5i8d44BgY05/MHesmoi8KuSLCLWk1rzXNrj3A0MYu5DwXTqaV7lfaXkl3A48vCCY27yPTB/jw3opPFfdyFqK0k2EWtFZuWy+sbItl1Op1nR3TiliAvi/eltWZDRBKvrY+kqNjEZw/0YkyP1lasVojaQ4Jd1Dp5RcV8uT2auTtjcXVy5I07gnh4oJ/F+7twqYhXfzjG5qPn6eXbhI/u7YG/9EsXdqxSwa6UGgl8CjgC87XW712x3hdYBDQp3eYFrfUW65Yq7J3Wmp8jU3h7UxSJmfnc3dubF0d1xtPd8vbvbVEpvLDuKFn5RTw7ohMzBvtL04uwexUGu1LKEfgSuAVIAA4qpTZoraPKbPYKsFpr/ZVSKgjYAvhVQ73CTp1Jv8QbGyL5/VQagS3dWT1jACHtLJ8bNKfAwFsbo1gTlkBgS3cWTw4hqLVl460LYWsqc8UeAkRrrWMBlFIrgTuBssGugcs/NY2BJGsWKexXUbGJL7dH89WOGFycHHjt9iAmDmhr8VW10aTZfiKV1zdEcj4rn8eGBvDU8A4yi5GoUyoT7N5AfJnXCUC/K7Z5A/hFKfUE0BAYbpXqhF2LSspm9poIjp/P5s6erXl5dGdaWPgIf1RSNt8fSmD94SRScwpp59GQNTMH0qetDNol6h5r3Tx9AFiotf5IKTUAWKKU6qq1NpXdSCk1HZgO4OtrncfBhe0pNpr4akcMn/12msb1XZg/MZjhFvR4OZ+Vz/rDSfxwKJETyTk4OSiGdmrB3b29ublzC7lKF3VWZYI9EWhT5rVP6bKypgAjAbTWe5VSroAHkFp2I631XGAuQHBwsLawZmHDTqfkMHtNBEcSsrijR2veGtPF7AeOYtJyeWNDJH9Ep6M19PJtwtt3duG27q1pVsWHl4SwB5UJ9oNAB6VUO0oCfRww/optzgE3AwuVUp0BVyDNmoUK22Y0ab75I5YPfzlFQxdHvhzfm9u6tzJ7P1uOnufZNRHUc3bkyWEd+Ecvb/w8GlZDxULYrgqDXWtdrJSaBfxMSVfGBVrrSKXUW0Co1noDMBuYp5T6JyU3Uh/RWssVuQBKJq14ZvVhQuMucmuQF+/+o5vZXRgNRhP/3nKCBbvP0Nu3CV9O6E2rxubNVypEXVGpNvbSPulbrlj2Wpmvo4AbrFuasAdbo1J4ZvVhAD6+rwf/6OVt9pRyyVkFzFpeMgzAIwP9eGl0Z6vOliSEvZEnT0W1KDaa+HjrKebsiKGbd2PmTOhNm2YNzN7Pnuh0nlx5iLwiI58/0Is7ZBgAISokwS6sLj23kCdLJ654IMSX1+8IwtXZvB4qJpPmq99j+OiXk/h7urFyem/at6jaAGBC1BUS7MKqwuIu8NiycDLzDHxwT3fuDW5T8ZuukFNg4JnVEWyNSmFMj9b8++5uNKwn36pCVJb8tAir0FqzcM9Z3t18HO+m9Vn3WF+6tDZ/4oqz6ZeYtjiU2PRLvH5HEI8M9DO7TV6Iuk6CXVTZpcJinv/uCJuOnGd4Zy8+uq+HRXOG7jyVxqzl4Tg6KJZMCWFggEc1VCuE/ZNgF1WSlJnP1EWhnEjO5vmRgcwY7I+Dg3lX2Fpr5u86w79/PE5HL3fmTQy26EarEKKEBLuw2KFzF5m2OIxCg5EFj/RlaKcWZu+jwGDkxXVH+f5QIqO6tuTDe3tIe7oQVSQ/QcIi6w8n8uzaI7Rs5MqKaf3o4GV+j5XzWfnMWBLGkYQsZt/SkVnD2kt7uhBWIMEuzGIyaf7762k++/U0IX7N+PqhPmaPz2IyaX48lszrGyLJLypm7kN9uLVLy2qqWIi6R4JdVFp+kZF/rYlg89Hz3NvHh3f/0c2sJ0C11uw8nc4HP5/gWGI2nbzc+XxaPzpacLUvhCifBLuolJTsAqYtDuVoYhYvjQ5k2o3+ZjWbhJ+7yPs/nWBf7AV8mtbn4/t6cGdPbxzNvNEqhKiYBLuo0IEzF3hiRTi5BcXMe8i8sdNPJufwwc8n2XY8BQ+3erw5pgsPhPjKWC9CVCMJdlEuo0nz+W8l7em+zRqwcFIInVtVbt7Q7NI5R78LT8CtnhPPjujEpBv8aOAi33JCVDf5KRNXdT4rn6dXHmb/mQvc3cubt+7qilsluyEeS8zi8eXhJFzMZ/qN/jw6NIAmDWQCDCGuFwl28TfbolJ4dm0EhcUmPrq3B2P7+FTqfVprlu0/x1ubomjWwIVV0/sT7NesmqsVQlxJgl38qbDYyHs/nuDb3WcJatWIL8b3wt/TrVLvzS0s5qV1R9kQkcTgjp58cl8PmruZN5mGEMI6JNgFALFpuTyx4hCRSdk8MtCPF0cHVnoy6BPJ2Ty2LJyz6Zd4dkQnHh0SYPawAkII65Fgr+POZeTxv50xrAlLoIGLI/MmBnOLGb1eVofG89r6Y7i7OrNsan8GBDSvxmqFEJUhwV5HnUzO4asd0Ww8ch5HpRjbx5snb+5Q6XlEC4uNvPrDMVaHJjAwoDmfjutl9jymQojqIcFex4Sfu8ic7TFsO55CAxdHJt/gx5RB/rRs7FrpfaTmFDBzSRjh5zJ5Ylh7nh7eUR40EqIWkWCvI/bFZvDpttPsjc2gSQNnnh7egYcH+NHUzHFejiZkMX1JKJl5BuZM6M3obq2qqWIhhKUk2OuA7w8l8MzqCFq41+OV2zrzQIivRUPjbohI4tk1EXi41WPtowMsmiFJCFH9JNjt3PrDicxeHcEA/+Z883Bf6ruYN6k0lIzG+NHWk3y5PYa+fk356sE+eEhXRiFqLQl2O7b5yHmeWR1BX79mzH842KJQzykw8M9Vh9l2PJVxfdvw1p1dZZwXIWo5CXY79dOxZJ5aeYjevk1Y8Ehfi8ZoOZeRx9TFB4lJu8SbY7owcUBbmQhDCBsgwW6HtkWl8MSKcLr5NObbSSEWtacfS8zikW8PYDBqFk8O4Yb2MrG0ELZCgt3ObD+RymPLwglq1YhFk0MqPXBXWXti0pm+OIzG9Z1ZOT2E9i0qN6yAEKJ2kGC3IztPpTFjaRgdW7qxeEo/Grk6m72PH4+e56mVh/HzaMCiySGVfmBJCFF7SLDbid3R6UxbHEp7TzeWTulH4/rmh/qy/XG88sMxevs25ZuHg2WoXSFslAS7jdNas3DPWf794wn8PRqydGo/swNZa81nv0bzybZTDAtswZfje1vUg0YIUTtIsNuwtJxCnl0bwY6Tadwc2IIP7u1BMzOfJDWZNG9sjGTx3jjG9vbhvbHdcHaU7oxC2DIJdhu1/UQqz66NIKegmLfv7MKD/c3vilhYbGT26gg2HTnP9MH+vDgqULozCmEHJNhtTIGhZDKMhXvOEtjSneXT+tPRy93s/WTlG3h0aRh7YjJ4cVQgM4YEVEO1QoiaUKlgV0qNBD4FHIH5Wuv3rrLNfcAbgAYitNbjrVinoGSo3adWHuJEcg6TbvDj+ZGBuDqb3xYefyGPyQsPcjbjEh/f14O7e1du6jshhG2oMNiVUo7Al8AtQAJwUCm1QWsdVWabDsCLwA1a64tKqRbVVXBdpLVm6b443tl8HHdXJ76d1JebOln2T3wkIZPJC0MpKjayeHI/mRhDCDtUmSv2ECBaax0LoJRaCdwJRJXZZhrwpdb6IoDWOtXahdZVWms++Pkkc3bEMLSTJx/c08PiCS1+iUzmqZWHae7mwsrp/WjfwvwmHCFE7VeZ7g/eQHyZ1wmly8rqCHRUSu1WSu0rbbr5G6XUdKVUqFIqNC0tzbKK65CyoT6hny8LHu5rcah/u/tM6cNL7nz/2A0S6kLYMWvdPHUCOgBDAR9gp1Kqm9Y6s+xGWuu5wFyA4OBgbaXPtktXhvrbd3a1aIJoo0nzzuYovt19lluDvPh0XC/poy6EnatMsCcCbcq89ildVlYCsF9rbQDOKKVOURL0B61SZR1jrVDPKyrmqZWH2RqVwuQb2vHybZ1lCjsh6oDKNMUcBDoopdoppVyAccCGK7b5gZKrdZRSHpQ0zcRar8y6w1qhnppdwLi5+/j1eApv3BHEa3cESagLUUdUeMWutS5WSs0Cfqaku+MCrXWkUuotIFRrvaF03a1KqSjACDyrtc6ozsLtUdlQH1+FUI9KymbKooNk5RuY+1Aww4O8qqFaIURtpbSumabu4OBgHRoaWiOfXRtdGervWBjqv51I4Ynlh2hU35n5DwfLvKRC2BmlVJjWOvha28iTp7WANUL98mBgb2+Kokvrxsx/OBivRq7VVLEQojaTYK9h6bmFvLjuKFujUiwO9WKjiTc3RrFkXxy3Bnnx33E9LZoKTwhhH+Snvwb9EpnMi+uOklNYzMujOzNlUDuzQz2nwMCs5Yf4/VQaM4b48/yIQIuacIQQ9kOCvQbkFBh4a2MUa8ISCGrViOX396RTS/MfGEq4mMeUhaHEpOXy3t3dGBfiWw3VCiFsjQT7dbY/NoPZayJIyszn8ZsCeOrmjrg4mT/++cGzF5i5JAyD0cQimWxaCFGGBPt1UmAw8vHWU8zbFYtvswasmTmAPm2bWbSvVQfP8coPx2jTtAHzHg4mwFMmmxZC/B8J9usgOjWXx5eFczIlh/H9fHl5dGca1jP/n77YaOLdLcf5dvdZbuzgwRcP9KZxA/PnNhVC2DcJ9mqWllPIxG/2U2Q08e0jfbkp0LLhdrPyDMxaEc6u0+lMGdSOF0cF4iRT2AkhrkKCvRoVGIzMWBLKxTwDa2YOoKu3ZQ8LRafmMm1xKAkX83h/bHfu69um4jcJIeosCfZqorXmpXVHCT+XydcP9rY41HecTOWJFYeo5+TAimn9CfazrF1eCFF3SLBXk69/j2XdoURm39KRkV1bWbSPb3ef4e1NUQS2bMS8h4PxblLfylUKIeyRBHs12BqVwvs/n2BMj9bMGtbeon188dtpPvzlFCO6ePHJ/fIkqRCi8iQtrOz4+WyeWnmI7t6Nef+e7ihl/pgvH289xee/RXN3L2/ev6e73CQVQphFgt2K0nMLmboolEauzsybGIyrs3kzFWmt+fePJ5i7M5Zxfdvw//7RTYYHEEKYTYLdSgqLjcxcEkbGpULWzhxICzNHVjSZNG9ujGTR3jgeHtCW1+/oIqEuhLCIBLsVlPSAOUZo3EXmTDC/B4zJpHn5h6OsOBDPtBvb8dLozmY34QghxGUS7Fbw9e+xfBeewD+Hd2R0N/N6wBQbTTy39gjrDiUy66b2zL61o4S6EKJKJNiraPHes/znp5IeME/ebF4PGIPRxD9XHWbTkfPMvqUjT9zcoZqqFELUJRLsVbBsfxyvrY/kliAvPrqvh1lX2kaT5onlh/gpMpmXRgcyfXBANVYqhKhLJNgttOrgOV7+/hjDAlvwxfheOJvZJfGdzVH8FJnMq7cHMWVQu2qqUghRF0kHaQusDUvghXVHGdLRkzkTelPPybxujUv2nuXb3WeZMqidhLoQwuok2M30w6FEnl0bwQ0BHvzvoT5m91XfcTKVNzZGMbxzC14a3bmaqhRC1GUS7GbYGJHEM6sP079dc4seQDqZnMOs5Yfo5OXOp+N64Sj91IUQ1UCCvZK2HD3P06sOE9y2Gd88Ekx9F/NCPS2nkMkLD9LAxZFvHgm2aKINIYSoDEmXSvglMpknVxyiZ5smLJjU1+wBuQoMRqYtDuXCpSJWzxhAq8YySqMQovpIsFdg56k0Hl8eTlfvxiyc1Bc3M6+0TSbN7NURRCRk8tWEPnTzsWxcdiGEqCxpirmGk8k5PLYsnABPNxZNDsHd1fz5RT/eeorNR8/zwshARnZtWQ1VCiHEX0mwlyM1p+DPNvEFj/SlcX3zQ/27sAS+2B7NuL5tmD7YvxqqFEKIv5Ngv4r8IiPTFodx4VIR3zzcl9YWzFy0OjSeF9YdYWBAc96+q6uM/yKEuG6kjf0KJpNm9prDHEnI5OsHzW8TLzAYeW39MVaHJjAwoDlfTehj9lOpQghRFRLsV/jwl5NsOZrMy6M7M6KLeW3iZ9Mv8eiycI6fz+aJYe15enhH6asuhLjuJNjLWB0az5wdMTwQ4svUG8171P+nY8k8uyYCBwfFt4/05abAFtVUpRBCXFul2giUUiOVUieVUtFKqReusd1YpZRWSgVbr8TrY09MOi+tO8qNHTx4684ulW4TNxhN/L8tx5m5NIx2ng3Z/OQgCXUhRI2q8IpdKeUIfAncAiQAB5VSG7TWUVds5w48BeyvjkKrU0xaLjOXhNHOoyFfjO9d6TbxlOwCnlh+iANnL/BQ/7a8cntnswcEE0IIa6tMU0wIEK21jgVQSq0E7gSirtjubeA/wLNWrbCaXbhUxOSFB3F2dDCrW+PBsxd4dGkYlwqNfDquJ3f29K7mSoUQonIqc2nqDcSXeZ1QuuxPSqneQBut9eZr7UgpNV0pFaqUCk1LSzO7WGsrKjYxc2kY57MKmDsxmDbNGlTqfb9EJvPg/P00cnVmw6wbJNSFELVKlfvhKaUcgI+B2RVtq7Weq7UO1loHe3p6VvWjq+ztTVEcOHOBD+7pTp+2TSv1npUHzjFzaRidWzVi7aMD6eDlXs1VCiGEeSrTFJMItCnz2qd02WXuQFdgR+kNx5bABqXUGK11qLUKtbaVB86xZF8cMwb7V+qKW2vNl9uj+fCXUwztVDLBhrmDgQkhxPVQmWQ6CHRQSrWjJNDHAeMvr9RaZwEel18rpXYA/6rNoR4Wd4FX1x/jxg4ePDcysMLtTSbNmxsjWbQ3jn/08ub9e7rLQ0dCiFqrwmDXWhcrpWYBPwOOwAKtdaRS6i0gVGu9obqLtKbkrAJmLg2ndZP6fP5AxZNdFBYbeWZ1BJuPnGfaje14cVRnHOShIyFELVaptgSt9RZgyxXLXitn26FVL6t6FBiMzFgaxqXCYpZO6UeTBi7X3D6nwMCMJWHsicngpdGBTB8ccJ0qFUIIy9WZRmKtNa/+cIyI+JIxYDq1vPZNz7ScQiYtPMDx8zl8dG8PxvbxuU6VCiFE1dSZYF+8N441YQk8eXOHCsdFT8zMZ8K8faRkFzJ/YrA8SSqEsCl1Itj3xmTw1qYohnf24umbO1xz27iMS4yft5/sAgNLp/ardDdIIYSoLew+2BMu5vH48nD8mjfgk/t7XPPGZ3RqLhPm76Ow2MSKaf3p6i3T2AkhbI9dB3t+kZHpi8MwGE3Mmxh8zantTiRn8+D8kmFuVk7vT2DLRterTCGEsCq7DfYCg5HpS0I5npzNgof74u/pVu62xxKzePCb/dRzcmDZ1P60b1H+tkIIUdvZZbAXFZuYtTycXafTeX9s92ve/Aw/d5GHFxygkaszy6f1o23zhtexUiGEsD67C/Zio4mnVx1i2/FU3r6rK/f1bVPutvtjM5i88CCe7vVYNq0/3hbMbSqEELWNXQW70aSZvSaCLUeTeeW2zjzUv2252+46nca0xaF4N6nP8mn98Wrkeh0rFUKI6mM3wW4yaV5cd4T1h5N4dkQnpt7oX+62vx5P4dFl4fh7NGTp1H54uNW7jpUKIUT1sotg11rz2oZjrA4teQDp8Zval7vt5iPneWrlIYJaN2Lx5JAKhxUQQghbY/NDFGqteXvTcZbuO8eMIf78c3j5DyCtDUvgiRXh9PJtwtKpFY8VI4QQtsimr9i11rz/80kW7D7DIwP9eGFkYLmTUC/ZF8erPxxjUHsP5k7sI2OpCyHslk2n25wdMXy1I4bx/Xx5/Y6gckN93s5Y3t1ynJsDW/DlhN64OsuE00II+2XTwd7LtwkP9vflrTFdrxrqWms++zWaT7ad4rburfjv/T1lggwhhN2z6WAfGODBwACPq67TWvPeTyf43++xjO3tw/v3dK9wUg0hhLAHNh3s5Sk7ld3lK3qZ9UgIUVfYXbCX9Gc/yqrQeKYP9ufFUeXfUBVCCHtkV8GuteaNjZGsCo3niWHteeaWjhLqQog6x27uJF5uU1+8N47pg/0l1IUQdZbdBPvnv0Xzv99jeah/W2l+EULUaXYR7PN3xfLx1lOM7e3Dm2O6SKgLIeo0mw/2pfvieGfzcW7r1or/jO0mvV+EEHWeTQf7uvAEXl1/jJsDW/DJ/T1xkoePhBDCdoN9y9Hz/GtNBAMDmvPlhN64ONnsoQghhFXZZBr+diKFJ1ccordvU+ZNDJaxX4QQogybC/Y9MenMXBpOUOtGLJjUV0ZpFEKIK9hcsHu61aO/f3MWTQqhkatzTZcjhBC1js1d7nbwcmfx5JCaLkMIIWotm7tiF0IIcW0S7EIIYWck2IUQws5UKtiVUiOVUieVUtFKqReusv4ZpVSUUuqIUupXpVRb65cqhBCiMioMdqWUI/AlMAoIAh5QSgVdsdkhIFhr3R1YC7xv7UKFEEJUTmWu2EOAaK11rNa6CFgJ3Fl2A631dq11XunLfYCPdcsUQghRWZUJdm8gvszrhNJl5ZkC/Hi1FUqp6UqpUKVUaFpaWuWrFEIIUWlWvXmqlHoQCAY+uNp6rfVcrXWw1jrY09PTmh8thBCiVGUeUEoE2pR57VO67C+UUsOBl4EhWuvCinYaFhaWrpSKq2yhV/AA0i18b21lb8dkb8cD9ndM9nY8UDeOqcLOKUprfe0NlHICTgE3UxLoB4HxWuvIMtv0ouSm6Uit9Wnz6zaPUipUax1c3Z9zPdnbMdnb8YD9HZO9HQ/IMV1WYVOM1roYmAX8DBwHVmutI5VSbymlxpRu9gHgBqxRSh1WSm0ws3YhhBBWUqmxYrTWW4AtVyx7rczXw61clxBCCAvZ6pOnc2u6gGpgb8dkb8cD9ndM9nY8IMcEVKKNXQghhG2x1St2IYQQ5ZBgF0IIO1Prg10ptUAplaqUOlZmWTOl1Fal1OnSv5vWZI3mKOd43lBKJZb2KDqslBpdkzWaSynVRim1vXQguEil1FOly23yPF3jeGz2PCmlXJVSB5RSEaXH9Gbp8nZKqf2lA/ytUkq51HStlXGN41molDpT5hz1rOFSzaaUclRKHVJKbSp9bfY5qvXBDiwERl6x7AXgV611B+DX0te2YiF/Px6AT7TWPUv/bLnK+tqsGJittQ4C+gOPlw4UZ6vnqbzjAds9T4XAMK11D6AnMFIp1R/4DyXH1B64SMmQILagvOMBeLbMOTpcUwVWwVOUdC2/zOxzVOuDXWu9E7hwxeI7gUWlXy8C7rqeNVVFOcdj07TW57XW4aVf51DyTemNjZ6naxyPzdIlcktfOpf+0cAwSh4uBNs6R+Udj01TSvkAtwHzS18rLDhHtT7Yy+GltT5f+nUy4FWTxVjJrNLx7BfYSpPF1Sil/IBewH7s4DxdcTxgw+ep9Ff8w0AqsBWIATJLH0KEigf4q1WuPB6t9eVz9G7pOfpEKVWv5iq0yH+B5wBT6evmWHCObDXY/6RL+mva+v/UXwEBlPxKeR74qEarsZBSyg34Dnhaa51ddp0tnqerHI9NnyettVFr3ZOS8Z5CgMCarahqrjwepVRX4EVKjqsv0Ax4vuYqNI9S6nYgVWsdVtV92WqwpyilWgGU/p1aw/VUidY6pfSb1ATMo+SHzqYopZwpCcFlWut1pYtt9jxd7Xjs4TwBaK0zge3AAKBJ6XhQUM4Af7VdmeMZWdqMpksHIvwW2zpHNwBjlFJnKZn3YhjwKRacI1sN9g3Aw6VfPwysr8Faquxy+JX6B3CsvG1ro9J2wG+A41rrj8usssnzVN7x2PJ5Ukp5KqWalH5dH7iFknsH24F7SjezpXN0teM5UeZCQlHSFm0z50hr/aLW2kdr7QeMA37TWk/AgnNU6588VUqtAIZSMnRlCvA68AOwGvAF4oD7tNY2cUOynOMZSsmv9xo4C8wo0zZd6ymlBgG7gKP8X9vgS5S0S9vcebrG8TyAjZ4npVR3Sm68OVJyQbdaa/2WUsqfkqvDZpRMcflgZYbdrmnXOJ7fAE9AAYeBmWVustoMpdRQ4F9a69stOUe1PtiFEEKYx1abYoQQQpRDgl0IIeyMBLsQQtgZCXYhhLAzEuxCCGFnJNhFnaOUerl0RMAjpSMA9lNK7VBKhZbZJlgptaP066GXR9ors36hUuoehKiFKjXnqRD2Qik1ALgd6K21LlRKeQCXh0FtoZQapbX+seYqFKLq5Ipd1DWtgPTLD3hordO11kml6z4AXq6xyoSwEgl2Udf8ArRRSp1SSs1RSg0ps24vUKSUuukq77uxzOQNh4Ex16NYISwhwS7qlNLHy/sA04E0YJVS6pEym7wDvHKVt+4qM3lDT0rGwRGiVpJgF3VO6QiNO7TWrwOzgLFl1v0G1Kdk5iQhbJIEu6hTlFKdlFIdyizqSckAZWW9Q8lkB0LYJOkVI+oaN+Dz0iFfi4FoSpplLk89htZ6i1IqrWbKE6LqZHRHIYSwM9IUI4QQdkaCXQgh7IwEuxBC2BkJdiGEsDMS7EIIYWck2IUQws5IsAshhJ35//IGo6SEUVbhAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df_day1.plot(x='SNH', y='I_450');" ] }, { "cell_type": "code", "execution_count": 4, "id": "c47e7d8e-ad8d-40b3-9d0c-81dc85258b43", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEGCAYAAABxfL6kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2zElEQVR4nO3deVxU1f/H8ddhR3AFd0RBxX1Bcdc0l1zTyjTXLHfLsr6tVl+36vvtV9lelpq541rulXtuueAuuCGiIioICqIgy5zfHxf7kokwMCwzfJ6PBw+ZmXvPnOvA2+u5536O0lojhBDCdtgVdAeEEEJYlgS7EELYGAl2IYSwMRLsQghhYyTYhRDCxjgU1Bt7enrqatWqFdTbCyGEVTp48OB1rXXZh21TYMFerVo1goKCCurthRDCKimlLmS1jQzFCCGEjZFgF0IIGyPBLoQQNqbAxtgfJCUlhYiICJKSkgq6KzbBxcUFLy8vHB0dC7orQoh8VKiCPSIiguLFi1OtWjWUUgXdHaumtSYmJoaIiAh8fHwKujtCiHyU5VCMUmqOUipKKXUik9cHK6WOKaWOK6X2KKUa5bQzSUlJeHh4SKhbgFIKDw8P+d+PEEVQdsbY5wLdHvL6eaC91roB8D4wMzcdklC3HPm7FKJoyjLYtdY7gNiHvL5Ha30j/eFewMtCfRNCiMIpF+XON4VcI/JmogU780+WnhUzAvg1sxeVUqOVUkFKqaDo6GgLv7VlKKUYMmTIX49TU1MpW7YsvXr1sth7tG7d2mJtCSHy0bVgmN0FfuoBqcnZ3CcEVgyHGW34fG4go+YHMXpB3t6cabGLp0qpRzGCvW1m22itZ5I+VBMQEFAoV/hwc3PjxIkTJCYm4urqyqZNm6hcubJZbaSmpuLgkPlf7Z49e3LbTSFEfkq9Czs+hV2fgZMbJMXBHx9Bp0n/2NRk0py8Go9CUc4+Hs9FT5N4+xaJJnuGmV4nxr4fpnID87S7Fgl2pVRDYDbQXWsdY4k2C1KPHj1Yv349Tz/9NIGBgQwcOJCdO3cCEBsby/DhwwkLC6NYsWLMnDmThg0bMmXKFM6dO0dYWBje3t7UqlWLixcvEhYWxsWLF3nllVd4+eWXAXB3dychIYHt27czZcoUPD09OXHiBE2bNmXhwoUopdiwYQP/+te/cHNzo02bNoSFhbFu3bqC/GsRouhaPR6OL4OGA6Drf2DzJNj1OdToAlVbAXAnOZVNO/dwav8mZsUF4EQqc50+poRdNE/fnQL2jqx3eIMPHH8ipXpToEWedTfXwa6U8gZ+BoZqrc/kvkuGqWuDCYmMt1RzANStVILJj9fLcrsBAwYwbdo0evXqxbFjxxg+fPhfwT558mT8/f1ZtWoVW7du5dlnn+XIkSMAhISEsGvXLlxdXZkyZQqnTp1i27Zt3Lp1i1q1ajFu3Lh/zCk/fPgwwcHBVKpUiTZt2rB7924CAgIYM2YMO3bswMfHh4ED8/ZfdyHEQ0SdhOPLoc0E6DLNeK7bRxC+C34ZTfTgrcw+cJ2V+8NYbHqDPnaXGVPWD+XgRPEbZ3nD9CIeNZvx9UB/Ur//Foe4cBwbPJmnXc4y2JVSgUAHwFMpFQFMBhwBtNbfA5MAD+C79FkYqVrrgLzqcH5o2LAh4eHhBAYG0qNHj7+9tmvXLlauXAlAx44diYmJIT7e+Aeod+/euLq6/rVtz549cXZ2xtnZmXLlynHt2jW8vP5+bbl58+Z/Pde4cWPCw8Nxd3fH19f3r/nnAwcOZObMXE02EkLk1B8fG8MvbV7533POxUl6/Huc5vck/JvHCUx5g/9U2IFf7GV029codTQQ4mNgwEI+8O2Ko73Cwd4ORm2GhGvg7J6nXc4y2LXWDz1d1FqPBEZarEfpsnNmnZd69+7N66+/zvbt24mJyd7okpub298eOzs7//W9vb09qamp/9gnO9sIIQpI1CkI/gXavgrFygCQmmZixcEIPt98m+bJ4/jC6TsOVP4c59jTUP9pVOdJ8MhrkHgDSnrhmrE997LGVx6TWjGZGD58OJMnT6ZBgwZ/e75du3YsWrQIgO3bt+Pp6UmJEiUs+t61atUiLCyM8PBwAJYuXWrR9oUQ2bTjY3AsBq3GA7AvLIbuX+7k7Z+PU6mUK8+Ofg37Z+bjHHPKOKvv9pGxn5MblCy4md+FqqRAYeLl5fXXxc6MpkyZwvDhw2nYsCHFihVj3rx5Fn9vV1dXvvvuO7p164abmxvNmjWz+HsIIbIQfRpO/GyMrbt5sO5YJK8uPUKlUq58P6QJXetVSL8J8HEY8TvYOeTL2Xh2KJ2Lifa5ERAQoO9faOPkyZPUqVOnQPpT2CQkJODu7o7WmhdffJGaNWvy6quvmt2O/J0Km5SSCEcWw5/fAAp6Tofqj+ayzSTjIunlIIg+A1HBkJYKrxxj/rEEJq8JJqBqaWYPa0ZJ14IrrKeUOpjVdUw5Yy+kZs2axbx580hOTsbf358xY8YUdJeEKHiJNyHoR9g7A25HQ+WmxpzyBU+A/1B47ANwLWVem3cTIGiO8Y9EwjVwLU2qhx/XKj7GHtf2rAoMZXdoDJ3rlOebQf64ONrnwYFZlgR7IfXqq6/m6AxdCJsVuhmWD4e7cVC9k3FBs1pbSE2C7R/Bnq+MbXpOh1o94EG1km6Ew6EFcDsKkuLh7i2IPGRc6PRpD31/JNipASPnH+RKXBL2dgq/8im81LEGEzrVNGa2WAEJdiFE4XdyrXFbvmcteOJbqJihiKyjK3SZCnX7GDcSLRkEZetA02HQ8BljNsuNC7DjEzgaaOzjVhacixtfvo9CyxegSjM2hVxjwk97KenqyPzhzQmoVppiTtYXk9bXYyFE0XJ0KawaB5WbwODl4Fr6wdtVbgKjtxvhfXAu/PY2bJoM3i3hwm5Q9hAwwjjTL1Hxb7smJqcxd/s5Pv79FA0ql2T2swGUK+GS54eWVyTYhRCFV9AcWPcv8GkHAwKzvrHHwck4U286jLTIYyTv/wmX8C2ops9Du39BiUp/bXo94S67Q6/z24mrbDsdRVKKie71K/BZ/8a4OhX+cfSHkWAXQhS8lCS4eRESY+FOLNyJMSop7psBNbtC//ngmPUZtNaaw5dusvZoJOuPRRF1qzPFnLpSLdQNn5tXKeF6nXPRtwmNSiD2tlGdsVxxZ/o1rUL3+hVoVd02FvqRYH+AVatW8eSTT3Ly5Elq165NdHQ0vXr1Ijk5ma+++orjx4/zwgsvFHQ3hbB+KYlw4EejauKdB9zh3aAf9PnOOBPPwpL9F/l2eyiXYhNxcrDj0VplaVatDJE3kzh/PYHgyDjik1Lx9XSja73y1CxXnEZVSuJfpTR2dtYf5hlJsD9AYGAgbdu2JTAwkKlTp7JlyxYaNGjA7NmzCQ8PZ9y4cWYFu9YarTV2dtZxRV2IPJeWAocXwB+fwK1I8O0AjQaBmwe4loFiHsZFT+fiWTalteazTWf4emsoAVVLM6GTH4/VK08JlyK8iPu90Mnvr6ZNm+r7hYSE/OO5/Hbr1i1dqVIlffr0ae3n56cPHz6sq1Spoj09PXWjRo10//79tYuLi27UqJF+/fXXtdZaf/zxxzogIEA3aNBAT5o0SWut9fnz57Wfn58eOnSorlu3rt6+fbuuXbu2HjlypK5bt67u0qWLvnPnjtZa68OHD+sWLVroBg0a6CeeeELHxsY+9Pn27dvrN998Uzdr1kzXrFlT79ixI9PjKQx/p0L8xWTS+thyrb9oqPXkElrP7qJ1WOY/v1lJTTPpt1ce01XfWqffWnFUp6SmWbCzhRMQpLPI18J7xv7r23D1uGXbrNAAun/00E1Wr15Nt27d8PPzw8PDg7S0NKZNm0ZQUBDffPMN4eHhBAcH/1Wqd+PGjZw9e5b9+/ejtaZ3797s2LEDb29vzp49y7x582jZsiXh4eGcPXuWwMBAZs2aRf/+/Vm5ciVDhgzh2Wef5euvv6Z9+/ZMmjSJqVOn8sUXX2T6PBiLeezfv58NGzYwdepUNm/ebNm/KyEsLfEGrH0FQlYZv4uDlkPNLg+eb54NSSlpvLLkCL8FX+XFR6vz+mO1bGJ83BIKb7AXkMDAQCZMmAAYddkDAwOpX79+pttv3LiRjRs34u/vDxilAM6ePYu3tzdVq1alZcuWf23r4+ND48aNAWjatCnh4eHExcVx8+ZN2rdvD8CwYcPo169fps/f89RTT/2tHSEKtfM74Zcxxp2dnSYb9Vfscj7z5EpcIq8sOcK+87H8u1ddRrT1sWBnrV/hDfYszqzzQmxsLFu3buX48eMopUhLS0MpRb16mZcQ1lozceLEf9zyHx4enmUZ38TEnC9oe68tKfUrCrXUZNj2Iez+Esr4wohNxnzzHEozaRb8Gc6nG8+QajLxxTONecLfvKUriwK5mpfBihUrGDp0KBcuXCA8PJxLly7h4+PDpUuX/tqmePHi3Lp166/HXbt2Zc6cOSQkJABw+fJloqKisv2eJUuWpHTp0n+t0LRgwQLat2+f6fNCWIW0FAhZDbM7we4voMmzMHZnrkI9ODKOp2bsYcraEPy9S7HxlfYS6pkovGfsBSAwMJC33nrrb8/17duXt956ixEjRgDg4eFBmzZtqF+/Pt27d+eTTz7h5MmTtGplrHvo7u7OwoULsbfP/n8z582bx9ixY7lz5w6+vr789NNPD31eiELr5iU4NA8OzTeGXUpWgWcWQp3Hc9ScTp+XvjzoEsuCIihdzJEvBzSmd6NKMp7+EFK218bJ36mwGFManN5glMtNSzFqtDgW+9+fMaEQugm0Br+uEDAcanTO0Vj6pdg7rDp8mZ8PX+b89ds4O9jRt6kXb3atRaliWc9pt2VStlcIkXvJt+HwItj7Hdw4DyW8wL2ccXNRyp30PxPBpQS0e80YdinlbfbbXItPYsPxK6w/doWgCzcAaOFThnHtq9O9QQWKF+V56WaSYBdCPNitq7DvB6NeS9JN8GoGnadA7V5gb5noiL51968wP3AhFq2hdoXivNbFjyf8K1OlTDGLvE9RU+iCXWstY2cWUlDDbMIGnNsGy4ZB8i0jyFuNB+8WFmk6KSWNLSejWHkogj/ORJNm0tQqX5xXO/vRo0FFapTLotCXyFKhCnYXFxdiYmLw8LCNQjwFSWtNTEwMLi7WW3pUFJADP8KGN6BsbaP4lmeNXDdpMmkOXrzBL4cvs+5oJPFJqZQv4cyodr481aQyfuWzLh0gsq9QBbuXlxcRERFER0cXdFdsgouLC15eBbdSurAypjT4/d3/VVR8+sds1WrJjNaa4Mh41h6NZO3RSCLjknBxtKNbvQr0bepF6+qe2NtY8a3ColAFu6OjIz4+cgeZEPkuKR5WjoCzG6Hli/DY+zm+MzQuMYVF+y6w4mAEYdG3cbBTtKvpyRvdatGlbgXcnQtV7Ngk+RsWoqi7eREWPwPRp6HnZ9BsRI6auZ5wlzm7zrPgzwvcuptKC58yjGzrS/f6FSjtVrSnKOY3CXYhiqqkeNjzNfz5Ldg5wJCVUP1Rs5uJvJnIzB1hLDlwkbupJnrUr8i4DtWpX7lkHnRaZIcEuxBFTUoSBP0IOz41Viyq9yR0mmTUcslEYnIaP+w4x9moBOITU4hPTCEuMYX4pFRu3knGTime8K/MuA7VqV5WZrUUNAl2IYoKUxocXQLb/wtxl8D3USPQs6jfEhwZx4QlRwiNSsDX040Sro6UKuaEt4cbJV0dKOvuQt+mlfEqLXPOCwsJdiGKgujT8PMouHIUKvlDn2+MVYsewmTSzN4Vxie/n6aMmxMLR7SgbU3P/OmvyBUJdiFsmdZwYDZsfM+o59L3R6jfN8vFLa7EJfLasqPsORdDt3oV+O9TDeQCqBWRYBfCVt26BqtfNApz1egMfb6F4hUeuovWmjVHI5m0OpiUNBMf921IvwAvuWHQykiwC2GLTm2ANeONAl7dP4Hmo7I8Sz8WcZP314VwIPwGjbxK8sUAf3w83R66jyicsgx2pdQcoBcQpbX+xxpxyvin/EugB3AHeE5rfcjSHRVCZMPdBNj4Lhyca6wr+tRsKFf7obtcjUvi499P8fOhy3i6O/HRUw3oF1BF7gq1Ytk5Y58LfAPMz+T17kDN9K8WwIz0P4UQ+enCHlg1Dm5cgNYvQ8f3wME5080Tk9OYtTOMGdvPkWbSjG1fnRcfrS7lcW1AlsGutd6hlKr2kE36APO1UUpwr1KqlFKqotb6iqU6KUSRY0ozFrNISwYnd7B7yCqWKUmw7QPY8w2UrgrPb4CqrTPdXGvNppBrTF0bwuWbifRoUIG3u9XB20OmK9oKS4yxVwYuZXgckf6cBLsQ2XHiZ/jtbWM8/F6Yk6HksmsZ447QGp2hese/XwCNPAy/jIXoU8aKRV3eB+fMbxC6GHOHKWuD2XoqCr/y7iwZ3ZKWvh55d2yiQOTrxVOl1GhgNIC3t/krrAhhc6JPGzNXPKpDtUeMBSzsncDO0fjezgGuhcC5rXBipbFP+fpGwNvZGyUB3Moa5QBqdM70bZJS0vjhjzC+2x6Kg53ivZ51GNa6Go72sp69LbJEsF8GqmR47JX+3D9orWcCM8FY89QC7y2E9Uq+Yyxm4VgMBi2HEhUz39Zkgmsn4NwWCN0Ce2eAKQUa9IceH4Nr6QfuFncnhT/ORjN942kuxNyhV8OKvNezLhVKSp1+W2aJYF8DjFdKLcG4aBon4+tCZMOvbxpDKENWPjzUwRhjr9jQ+Gr7qjH7JeGacaafQcLdVA6Ex/LnuRj2nLtOcGQ8WoNvWTe5c7QIyc50x0CgA+CplIoAJgOOAFrr74ENGFMdQzGmOz6fV50VwmYcXQqHFxiLP9foZP7+zu5/G0sPjozjg3UnORAeS6pJ42Rvh793KV7p5Eer6h74e5eSYZciJDuzYgZm8boGXrRYj4SwddFnYN2r4N0aOryTq6bupqbx9ZZQvv/jHKWKOTGmvS+tq3vSxLs0rk45WyhDWD+581SI/JSSCMufA0cXY+k5+5z/Ch68cIO3Vh4jNCqBvk28+HevOpQqJvVchAS7EPnr17cgKhgGr4QSlXLUxJ3kVD79/Qw/7TlPxRIuzH2+GR1qlbNwR4U1k2AXIr8cWw6H5hkXP2tmPjUxM1prtp2OYsqaEC7G3mFoy6q81b22rCEq/kF+IoTISyYTXNoHx5fDkcVQpSU8+p7ZzYRExvPhhhB2h8bg6+kmNxaJh5JgF8LStIZrwUaYn1hprFbk4Aq1e0DX/5g1rh4Vn8T0jWdYdvASJV0dmfx4XQa3qIqTg8xwEZmTYBfCUu7EGlUVjy2D6JOg7I2pjJ0mQa0eD73V/36JyWnM3hnGjD/OkZJmYkQbH17qWJOSxaRAl8iaBLsQuXXjAuz9Dg7Nh5Q74N0Kek6Huk+Am3k3BF2+mUjgvossOXCJ6wl36VavAm93r001qYsuzCDBLkRORR6BPV9B8CpjEYsG/aD1S1C+nlnNmEyaP85Gs2jvBbaeikIDHWuVY/QjvrSQcXSRAxLsQphDawjbBru+gPN/gFNxaPUCtBgHJSub1VR8UgqL9l5k8f4LXIpNxNPdiXEdqjOwuTdepaWErsg5CXYhsuviPtgyFS7sBvcK0HkqBDwPLiXNbupYxE1eWHSIiBuJtPApw5tda9O1XgW5KCosQoJdiKxcPQFb34czv4FbOWMN0abDHro6UWa01szbE86HG05SrrgLK8e1omnVMnnQaVGUSbALkZnYMNj2Hzi+AlxKGLNbWowFp5xdyIxPSuHtlcfYcPwqnWqXY3r/RlICQOQJCXYh7pd8GzZPgaA5xoIXbV+BNhMyrXmeHScux/HiYmPoZWL32oxq54udLBYt8ogEuxAZXTkKK0ZATKix1Fz7N/++FJ2ZtNYs3HeR99eGUMbNiaWjWxJQTYZeRN6SYBcCjNkue2fA5slQzAOeXQ2+7XPRnGbn2etM33iaoxFxPOJXls/7N8LD3fxxeSHMJcEuREI0rBoHoZuMO0R7fwNuOZ8/vi8shukbz7A/PJbKpVz5uG9Dnm7qJUMvIt9IsIuiLXQL/DIWkuKgx6fQbKRxs1EOHLl0k+kbT7Pz7HXKFndmWp96PNOsCs4OsuCFyF8S7KJoun4WDvwI+2ZA2Trw7Cqz7xi958ilm3yzNZTNJ69Rxs2Jd3vUYUjLqrKCkSgwEuyiaEhLhYj9cHoDnP7VuDgKEDACun4Ijq5mNae1ZvvpaL7/4xz7zsdSwsWB17r48XxbH6mPLgqc/AQK25SWAvGXjVkup3+FM79DYqwxfdGnnTEf3a8blKpiVrMpaSbWHIlk5o4wTl+7RcWSLrzXsw4DmntLoItCQ34ShXW7EQ7hu+Dmxb9/xV8GbTK2cSkFfl2hVneo3sm42chMCXdTWbL/InN2nScyLola5YvzWf9GPN6oEo72UgZAFC4S7MJ6XQ+F2R2NC58oKFEZSnlD1TbGn6W8wbMmVA7I8aLR1xPuMm9POPP/vEBcYgotfcvw4VMN6OBXFpXDi6xC5DUJdmGdkuIgcADYOcCYHcYFUAfL3Z5/MeYOs3aGsSzoEslpJh6rW56x7avj753zu0+FyC8S7ML6mNKMu0NvnIdn10DFRhZrOiQynu//OMe6Y5HY2yme8vdidHtfqpfN/upHQhQ0CXZhfTZPMW4m6vUFVGtjkSZT00z832+nmLXzPO7ODoxq58vwtj6UL+FikfaFyE8S7MK6HAk0Vi1qNsqohW4BMQl3eSnwMHvOxTCkpTdvdK1NSVdZW1RYLwl2YT0uHYC1L0O1dtDtvxZp8nhEHGMXHiQ64S6f9mvE0029LNKuEAVJgl1Yh/hIWDoYileE/vPBPvdn1MuDLvHuqhOUdXdm5djWNPAyfyUkIQojCXZR+KUkwpJBRp30oaugWO7K3ianmvhgfQjz/7xA6+oefD3QX6ouCpsiwS4KN61h9XiIPAIDFkP5urlq7lp8Ei8uOkTQhRuMfsSXN7vWwkFuMBI2RoJdFF7XQ+HXN+DcVuj4b6jdI8dNaa1ZczSSSauDSU418dVAf3o3qmTBzgpReEiwi8In+TbsnA67vzKKc3X/GJqPznFzsbeT+feqE6w/fgV/71JM79cIX5mXLmxYtoJdKdUN+BKwB2ZrrT+673VvYB5QKn2bt7XWGyzbVWHztIZT6+C3iRB3CRoNhC7TwL1cjpvcHHKNt38+TlxiMm90rcWYR3xl6EXYvCyDXSllD3wLdAEigANKqTVa65AMm70HLNNaz1BK1QU2ANXyoL/CVsWcg1/fhNDNUK4ePP8rVG2d4+ZuJaUwbW0Iyw9GULtCceYPb07dSuYX/xLCGmXnjL05EKq1DgNQSi0B+gAZg10D935rSgKRluyksGGpycawy67PwN4Zun1k3HyUw6JdaSbNtlNRTF4TzJW4RF7oUJ0JnWvKKkaiSMnOb09l4FKGxxFAi/u2mQJsVEq9BLgBnS3SO2Hbrh6HX8bBtePQoB889gEUr5CjpkIi4/nlcASrj0QSdesuPp5uLB/bmqZVpWiXKHosdfF0IDBXaz1dKdUKWKCUqq/1vYLYBqXUaGA0gLe3t4XeWlidtFTY9Tn88X/gWhoGLjFqpZvpSlwiq49EsurwZU5dvYWDnaJDrXI81aQyneqUk7N0UWRlJ9gvAxmXmfFKfy6jEUA3AK31n0opF8ATiMq4kdZ6JjATICAgQOewz8KaRZ2CVWMh8jDU72ssIG3mDUfnohOYsiaYXaHX0Rr8vUvxfp969GxYiTJulivdK4S1yk6wHwBqKqV8MAJ9ADDovm0uAp2AuUqpOoALEG3JjgorZ0qDP7+FrR+Akxv0mwv1njS7mQ3Hr/DG8qM4O9rzcseaPOlfmWqebpbvrxBWLMtg11qnKqXGA79jTGWco7UOVkpNA4K01muA14BZSqlXMS6kPqe1ljNyYYg9D7+MhUt7oXYv6PW52VMYU9JM/HfDKebsPk8T71J8O7gJFUuatwC1EEVFtsbY0+ekb7jvuUkZvg8BLFMYW9iWUxuMUAd48gdo+AyYuaTc1bgkxi82ygA817oa7/Sog5ODzEUXIjNy56nIG2mpsO1DYxpjxcZGRcbSVc1uZk/odV5ecpg7yWl8PdCfx6UMgBBZkmAXlpcQDSuHw/kd0PQ56PZ/4GjeSkQmk2bGH+eYvvE0vmXdWTK6CTXKFc+b/gphYyTYhWVd3AfLh0HiDejzHfgPNruJW0kp/GvZUTaFXKN3o0r896kGuDnLj6oQ2SW/LcIytIZ9P8DGd6FkFRixCSo2NLuZ8Ou3GTU/iLDrt5n8eF2ea10NZeaYvBBFnQS7yL27CbDmJQj+GWr1gCdmgGsps5vZcSaa8YsPYW+nWDCiOa2re1q+r0IUARLsInfiIiBwAFwLhs5ToPUEsDNvxorWmtk7z/PfX0/iV744s54NoEqZYnnTXyGKAAl2kXMRQRA4EFKTYNByqGl+iaCklDQm/nycXw5fpnv9Cnzar5GMpwuRS/IbJHLm+ApY9QKUqAjD1kK52mY3cSUukTELDnIsIo7XuvgxvmMNGU8XwgIk2IV5TCb44yOjgJd3a3hmIbh5mNmE5tcTV5m8JpjE5FRmDm3KY/VyVtVRCPFPEuwi+5LvwKpxELIKGg8xSgM4ZL/oltaaHWev88nvpzhxOZ5a5Yvz9agW+JWX+elCWJIEu8ie+CuwZCBEHoEu70Prl8wqDXDo4g0+/u0Ue8Ni8Srtymf9G9GncWXs7WToRQhLk2AXWbuwB1YMh7u3YGCgWbXTT1+9xSe/n2bzyWt4ujsztXc9Bjb3llovQuQhCXaROVMa7PjEGE8vXQ0Gr4AK9bO1a3z6mqMrD0Xg7uzAG11r8XybahRzkh85IfKa/JaJB4u7DD+Phgu7oOEA6PkpOGdvLPzE5TheXHyIiBuJjG7ny7gO1SlVTBbAECK/SLCLfzr9qzGVMfUuPPE9NB6Yrd201izad5Fp60IoU8yJpaNbElDNvNWRhBC5J8Eu/if1LmyaDPtmQIUG8PRc8KyRrV0T7qbyzs/HWXM0kkf8yvJ5/0Z4uDvnbX+FEA8kwS4M10NhxfNw9Ri0GAtdpoFD9oL51NV4Xlh0iPDrt3mjay3Gta+Oncx2EaLASLAXdbHnYc9XcHgROBWDAYFQu0e2d18WdIlJq09Q3MWRRSNb0qq6eTcrCSEsT4K9qLoWArs+hxMrwc4eGg2E9m9BycrZ2v1uahr/XnWCZUERtK7uwZcD/ClbXIZehCgMJNiLmksHjOXqTm8ARzdoOQ5avQglsr/kXNStJMYuOMihizd5qWMNXunsJzcaCVGISLAXFeG7YPtHEL4TXEtDh4nQfDQUM2/WyvGIOEYvCOLmnRS+G9yEHg0q5lGHhRA5JcFeFBxdCr+MgeIV4LEPjXVInd3NbmbN0UjeWH4UT3dnVoxrRb1KJS3fVyFErkmw27rjK2DVWPBpBwOXGhdIzWQyaaZvOs23287RrFppZgxpiqdMZRSi0JJgt2XBvxh3j3q3hoFLchTqt5JSeHXpETafjGJAsypM61Nf6rwIUchJsNuqk2th5Uio0hwGLQUnN7ObuBhzh5HzD3Au+jZTe9fj2VZVZSEMIayABLstOv0rLH8eKvnD4OU5Gk8/cTmO537aT0qaZv7w5rSpIQtLC2EtJNhtzZmNsOxZoyTAkJXZLtyV0Z5z1xk9/yAlXR1ZMro5NcqZ/w+DEKLgSLDbktAtsHQIlKsDQ38BF/Nnrfx6/AoTlhyhmmcx5g1vTsWSrnnQUSFEXpJgtxVh22HJICjrB0NXgWsps5tYtO8C7606QRPv0vw4LEBK7QphpSTYrZ3WsO8H2DQJPGrA0NVm33SktearLaF8vvkMHWuX49tBTXB1ss+jDgsh8poEuzVLiDLqpoduAr9u0Oc7cDOvCJfJpJmyNpj5f16gbxMvPurbAEd7mc4ohDWTYLdWZzbC6heMdUh7fArNRpq1uDQYhbxeW3aUdceuMPoRXyZ2ry3TGYWwARLs1iYlCTZPhn3fQ7l6MGytcbHUTHGJKYxbeJA952KY2L02Y9pXz4POCiEKQrb+z62U6qaUOq2UClVKvZ3JNv2VUiFKqWCl1GLLdlMARqndWR2NUG8xDkZtzVGoX4q9w9Mz9nAgPJbP+jeSUBfCxmR5xq6Usge+BboAEcABpdQarXVIhm1qAhOBNlrrG0qpcnnV4SJJazgwGza+Z8xLH7wCanbJUVPHIm4yfG4QyalpzB/eQhbGEMIGZWcopjkQqrUOA1BKLQH6ACEZthkFfKu1vgGgtY6ydEeLLK1hyzSjhnqNLvDEd+Ces383NwZfZcKSI3i4O7FkdAtqlDP/5iUhROGXnaGYysClDI8j0p/LyA/wU0rtVkrtVUp1e1BDSqnRSqkgpVRQdHR0znpclGQM9YDhMGhZjkP9p93nGbPwIH4VivPLC20k1IWwYZa6eOoA1AQ6AF7ADqVUA631zYwbaa1nAjMBAgICtIXe2zbdH+o9poOd+dMQ00yaD9aH8NPucB6rW54vB/jLHHUhbFx2gv0yUCXDY6/05zKKAPZprVOA80qpMxhBf8AivSxqLBTqd5JTmbDkCJtCrjG8jQ/v9qwjS9gJUQRkJy0OADWVUj5KKSdgALDmvm1WYZyto5TyxBiaCbNcN4sQC4V6VHwSA2buZcvJa0x5vC6THq8roS5EEZHlGbvWOlUpNR74HbAH5mitg5VS04AgrfWa9NceU0qFAGnAG1rrmLzsuE3KGOpNn89xqIdExjNi3gHiElOYOTSAznXL50FnhRCFldK6YIa6AwICdFBQUIG8d6F0f6j3/CxHob711DVeWnyYEq6OzB4WIOuSCmFjlFIHtdYBD9tG7jwtDCwQ6lpr5u4J5/11IdSrVJLZwwIoX8IljzoshCjMJNgLWkI0rJ0Ap9fnONRT00xMXRvCgr0XeKxueb4Y0JhiTvLRClFUyW9/QTq1Hta8bBTyeuwDaPmi2aF+KymF8YsP88eZaMa09+WtrrWxk4ukQhRpEuwFISkefpsIRxYaS9g9uRbK1zW7mYgbdxgxN4hz0Ql89FQDBjT3zoPOCiGsjQR7fgvfDavGQlwEtHsN2r8NDuavVHQgPJaxCw6SkmZiniw2LYTIQII9v6QkwbYPYM83ULoaPP8beLfIUVNLD1zkvVUnqFK6GLOGBVC9rCw2LYT4Hwn2/BB9BpYPg6gQ4wLpYx+As/lhnJpm4sMNJ/lpdzjtanryzcAmlCzmmAcdFkJYMwn2vJYQBQuehLS7MGg5+D2Wo2bi7qQwPvAQO89eZ0RbHyZ2r42DLGEnhHgACfa8lJIESwZDYiwM/w0qNspRM6FRCYyaH0TEjTt83Lch/ZtVyXonIUSRJcGeV7Q25qdH7If+C3Ic6ttPR/FS4GGcHewIHNWSgGplLNxRIYStkWDPK7u/gGNL4NH3oG7vHDXx0+7zvL8uhNoVSjBrWACVS7lato9CCJskwZ4XTm2AzVOh/tPwyOs5auKbrWf5dOMZutYrz+fPyJ2kQojsk7SwtKsnYOVIqOQPfb4BZd5doFprPtt0hq+3hvKUf2U+frqhXCQVQphFgt2SEqIhcAC4lISBgeBo3tCJ1pr//nqKmTvCGNCsCv95soGUBxBCmE2C3VJS78LSIXD7ujEDpngFs3Y3mTRT1wYz788LDGtVlcmP15NQF0LkiAS7JWgNa1+BS3uh3zyo1Nis3U0mzburjhO4/xKj2vnwTo86KDOHcIQQ4h4JdkvY/QUcXQwd3oF6T5i1a2qaiTdXHOPnw5cZ/2gNXnvMT0JdCJErEuy5tX8WbJ5izIBp/6ZZu6akmXh16RHWHbvCa138eKlTzbzpoxCiSJFgz42gObDhdajVE5783qwZMGkmzUuLD/Nb8FXe6VGb0Y9Uz8OOCiGKEgn2nDo0H9a9CjW7Qr+fwN68YlwfrA/ht+Cr/LtXXUa09cmjTgohiiKZIJ0TRxYbKx/V6Az954ODs1m7L/gznJ92hzOirY+EuhDC4iTYzXVsGax6AXzbwzMLwdG8BaO3n45iytoQOtcpxzs96uRRJ4UQRZkEuzlOrIRfxkC1tjDA/BuQTl+9xfjFh6lVvjhfDvDHXuapCyHygAR7dgWvgpWjoEpLGLQUnIqZtXv0rbsMn3uAYk72/PhcAG7OcnlDCJE3JF2y49R6WDkCvAJg8DJwcjNr96SUNEbNDyL2djLLxrSiYkmp0iiEyDsS7FkJ3QLLhkHFxjB4BTgXN2t3k0nz2rKjHI24yYzBTWngVTJv+imEEOlkKOZhroUYoV62FgxZCS4lzG7is01nWH/8Cm93q023+ubVjxFCiJyQYM/MrWuwuL8x7DJoKbiWMruJlQcj+GZbKAOaVWH0I76W76MQQjyADMU8SPIdWDIQ7sTA8xugpJfZTSwLusS7vxyndXUP3n+ivtR/EULkGwn2+5lMsGosXD5kzFOv5G/W7kkpaUxafYJlQRG0ru7BjMFNcZSFMoQQ+UiC/X5b34eQ1fDYB1Cnl1m7hl+/zbhFhzh5JZ6XOtbglc5+MlddCJHvJNgzOrwQdn0GTZ+DVuPN2vW3E1d5Y/lR7OwUPz3XjEdrl8ubPgohRBayNUaglOqmlDqtlApVSr39kO36KqW0UirAcl3MJ+d3wNoJ4Pso9Pg025UaU9JM/GfDScYuPIhPWTfWv9xWQl0IUaCyPGNXStkD3wJdgAjggFJqjdY65L7tigMTgH150dE8df2ssaydRw3oNzfblRqvxSfx0uLD7A+PZWjLqrzXqw7ODvZ521chhMhCdoZimgOhWuswAKXUEqAPEHLfdu8D/we8YdEe5rXbMbCoH9g5mjWt8UB4LOMWHuT23TS+HNCYPo0r520/hRAim7IzFFMZuJThcUT6c39RSjUBqmit1z+sIaXUaKVUkFIqKDo62uzOWlxqMiwbCvGRMDAQSlfL1m4bg68yZPY+Srg4smZ8Gwl1IUShkut5eEopO+Az4LWsttVaz9RaB2itA8qWLZvbt8693yfChd3Q51uo0jxbuyzZf5GxCw9Sp2IJVoxrTc3y5pUYEEKIvJadoZjLQJUMj73Sn7unOFAf2J5+E04FYI1SqrfWOshSHbW4g/PgwGxo/TI07Jfl5lprvt0Wyqcbz9ChVlm+G9yEYk4yqUgIUfhkJ5kOADWVUj4YgT4AGHTvRa11HOB577FSajvweqEO9Yv7YP1rUL0jdJ6S5eYmk2bq2mDm/XmBJ/0r8/HTDeWmIyFEoZVlsGutU5VS44HfAXtgjtY6WCk1DQjSWq/J605aVHykMa5e0gv6/gh2D5/Fcjc1jX8tO8r6Y1cY1c6Hid3rYCc3HQkhCrFsjSVorTcAG+57blIm23bIfbfySEqSMa3xbgIMXQXFyjx081tJKYxZcJA952J4p0dtRj9SPX/6KYQQuVB0Bom1NoZfLh80asCUr/vQzaNv3eX5ufs5eeUW0/s1om9T8wuBCSFEQSg6wb5/FhxZCO3fgjqPP3TTyzcTGTxrL9fi7zL72QC5k1QIYVWKRrCf3wm/vQ21ekD7TCsiAHAh5jaDZu0jPimFhSNb0LRq6XzqpBBCWIbtB/vNi7B8GHhUhyd/ALvMZ7OERiUwePZe7qaaCBzVkvqVZRk7IYT1se1gT74DSwZBWioMCHzo0nanrsYzZLZR5mbJ6JbUrmD+MnhCCFEY2G6wpyTB0sFw9QQMWgaeNTLd9MTlOIb8uA9nBzsWjWxJjXLu+dhRIYSwLNsM9tRkWP4cnNsKvb8Bv8cy3fTQxRsMm7OfEi6OLB7VgqoebvnXTyGEyAO2F+xpqfDzSDjzK/ScDk2GZrrpvrAYhs89QNniziwa1ZLKpVzzsaNCCJE3bCvYTWnGeqUhq6Hrf6DZyEw33Xk2mlHzg6hcypXFo1pSvoRLPnZUCCHyju0Eu8kEa1+G48uh0yRo9WKmm245eY1xiw7h6+nGwpEt8HR3zseOCiFE3rKNYNcaNrxurFna/i1ol3kF4fXHrjBhyWHqVirB/OHNKVXMKR87KoQQec/6SxRqDb+/A0E/QpsJ0GFippuuOBjBS4GH8PcuxcKRLSTUhRA2ybrP2LWGLVNh73fQYix0nprpItQL9l7g36tO0LaGJzOfbSq11IUQNsu6023ndNj1OTR9Hrp9lGmoz9oRxocbTtKpdjm+HdwEF0dZcFoIYbusO9irNIeAEdDj0weGutaar7aE8vnmM/RsWJEvnmksC2QIIWyedQe7zyPG1wNorfnot1P88EcYfZt48fHTDbGXBTKEEEWAdQd7JjIuZTekpTfTeteXVY+EEEWGzQW7yaSZ+PNxlgZdYvQjvkzsXhuVydi7EELYIpsKdq01U9YGszToEi91rMG/uvhJqAshihybuZJ4b0x9/p8XGP2Ir4S6EKLIsplg/3prKD/8EcbQllVl+EUIUaTZRLDP3hnGZ5vO0LeJF1N715NQF0IUaVYf7Av3XuCD9Sfp2aAi/9e3gcx+EUIUeVYd7D8fiuDfq0/QqXY5Pn+mMQ5y85EQQlhvsG84foXXlx+ldXUPvh3cBCcHqz0UIYSwKKtMw62nrvFy4GGaeJdm1rMBUvtFCCEysLpg33PuOmMXHqJupRLMeb6ZVGkUQoj7WF2wl3V3pqWvB/Oeb04JF8eC7o4QQhQ6Vne6W7N8ceYPb17Q3RBCiELL6s7YhRBCPJwEuxBC2BgJdiGEsDHZCnalVDel1GmlVKhS6u0HvP4vpVSIUuqYUmqLUqqq5bsqhBAiO7IMdqWUPfAt0B2oCwxUStW9b7PDQIDWuiGwAvjY0h0VQgiRPdk5Y28OhGqtw7TWycASoE/GDbTW27TWd9If7gW8LNtNIYQQ2ZWdYK8MXMrwOCL9ucyMAH590AtKqdFKqSClVFB0dHT2eymEECLbLHrxVCk1BAgAPnnQ61rrmVrrAK11QNmyZS351kIIIdJl5waly0CVDI+90p/7G6VUZ+BdoL3W+m5WjR48ePC6UupCdjt6H0/geg73Laxs7Zhs7XjA9o7J1o4HisYxZTk5RWmtH76BUg7AGaATRqAfAAZprYMzbOOPcdG0m9b6rPn9No9SKkhrHZDX75OfbO2YbO14wPaOydaOB+SY7slyKEZrnQqMB34HTgLLtNbBSqlpSqne6Zt9ArgDy5VSR5RSa8zsuxBCCAvJVq0YrfUGYMN9z03K8H1nC/dLCCFEDlnrnaczC7oDecDWjsnWjgds75hs7XhAjgnIxhi7EEII62KtZ+xCCCEyIcEuhBA2ptAHu1JqjlIqSil1IsNzZZRSm5RSZ9P/LF2QfTRHJsczRSl1OX1G0RGlVI+C7KO5lFJVlFLb0gvBBSulJqQ/b5Wf00OOx2o/J6WUi1Jqv1LqaPoxTU1/3kcptS+9wN9SpZRTQfc1Ox5yPHOVUuczfEaNC7irZlNK2SulDiul1qU/NvszKvTBDswFut333NvAFq11TWBL+mNrMZd/Hg/A51rrxulfGx7wemGWCrymta4LtAReTC8UZ62fU2bHA9b7Od0FOmqtGwGNgW5KqZbA/2EcUw3gBkZJEGuQ2fEAvJHhMzpSUB3MhQkYU8vvMfszKvTBrrXeAcTe93QfYF769/OAJ/KzT7mRyfFYNa31Fa31ofTvb2H8UFbGSj+nhxyP1dKGhPSHjulfGuiIcXMhWNdnlNnxWDWllBfQE5id/liRg8+o0Ad7Jsprra+kf38VKF+QnbGQ8en17OdYy5DFgyilqgH+wD5s4HO673jAij+n9P/iHwGigE3AOeBm+k2IkHWBv0Ll/uPRWt/7jD5M/4w+V0o5F1wPc+QL4E3AlP7Ygxx8RtYa7H/RxnxNa/+XegZQHeO/lFeA6QXamxxSSrkDK4FXtNbxGV+zxs/pAcdj1Z+T1jpNa90Yo95Tc6B2wfYod+4/HqVUfWAixnE1A8oAbxVcD82jlOoFRGmtD+a2LWsN9mtKqYoA6X9GFXB/ckVrfS39h9QEzML4pbMqSilHjBBcpLX+Of1pq/2cHnQ8tvA5AWitbwLbgFZAqfR6UJBJgb/CLsPxdEsfRtPphQh/wro+ozZAb6VUOMa6Fx2BL8nBZ2Stwb4GGJb+/TBgdQH2JdfuhV+6J4ETmW1bGKWPA/4InNRaf5bhJav8nDI7Hmv+nJRSZZVSpdK/dwW6YFw72AY8nb6ZNX1GDzqeUxlOJBTGWLTVfEZa64laay+tdTVgALBVaz2YHHxGhf7OU6VUINABo3TlNWAysApYBngDF4D+WmuruCCZyfF0wPjvvQbCgTEZxqYLPaVUW2AncJz/jQ2+gzEubXWf00OOZyBW+jkppRpiXHizxzihW6a1nqaU8sU4OyyDscTlkOyU3S5oDzmerUBZQAFHgLEZLrJaDaVUB+B1rXWvnHxGhT7YhRBCmMdah2KEEEJkQoJdCCFsjAS7EELYGAl2IYSwMRLsQghhYyTYRZGjlHo3vSLgsfQKgC2UUtuVUkEZtglQSm1P/77DvUp7GV6fq5R6GiEKoWyteSqErVBKtQJ6AU201neVUp7AvTKo5ZRS3bXWvxZcD4XIPTljF0VNReD6vRs8tNbXtdaR6a99ArxbYD0TwkIk2EVRsxGoopQ6o5T6TinVPsNrfwLJSqlHH7BfuwyLNxwBeudHZ4XICQl2UaSk317eFBgNRANLlVLPZdjkA+C9B+y6M8PiDY0x6uAIUShJsIsiJ71C43at9WRgPNA3w2tbAVeMlZOEsEoS7KJIUUrVUkrVzPBUY4wCZRl9gLHYgRBWSWbFiKLGHfg6veRrKhCKMSxzb+kxtNYblFLRBdM9IXJPqjsKIYSNkaEYIYSwMRLsQghhYyTYhRDCxkiwCyGEjZFgF0IIGyPBLoQQNkaCXQghbMz/A/1o5EDQ5X43AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df_day1_morning = df_day1.loc[:df_day1['SNH'].argmax()]\n", "df_day1_afternoon = df_day1.loc[df_day1['SNH'].argmax()+1:]\n", "\n", "f, ax = plt.subplots()\n", "df_day1_morning.plot(x='SNH', y='I_450', ax=ax, label='Morning');\n", "df_day1_afternoon.plot(x='SNH', y='I_450', ax=ax, label='Afternoon');" ] }, { "cell_type": "markdown", "id": "1ac91885-4b89-4224-9b62-eab50121df27", "metadata": {}, "source": [ "## Merge several days into one dataframe " ] }, { "cell_type": "code", "execution_count": 11, "id": "cbb8e734-3160-438e-9bee-c3f863aeef81", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SNHI_450date
010.0283380.23866220111003
110.8385240.28205420111003
211.6463880.32162720111003
312.4461730.36112820111003
413.2463670.39829320111003
............
45016.7254570.63098420120514
45115.5358720.57729620120514
45214.6171520.53263520120514
45313.7058810.48782020120514
45412.8074930.44973520120514
\n", "

455 rows × 3 columns

\n", "
" ], "text/plain": [ " SNH I_450 date\n", "0 10.028338 0.238662 20111003\n", "1 10.838524 0.282054 20111003\n", "2 11.646388 0.321627 20111003\n", "3 12.446173 0.361128 20111003\n", "4 13.246367 0.398293 20111003\n", ".. ... ... ...\n", "450 16.725457 0.630984 20120514\n", "451 15.535872 0.577296 20120514\n", "452 14.617152 0.532635 20120514\n", "453 13.705881 0.487820 20120514\n", "454 12.807493 0.449735 20120514\n", "\n", "[455 rows x 3 columns]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import glob\n", "\n", "all_df = []\n", "for f in sorted(glob.glob('*.mat')):\n", "\n", " mat = loadmat(f)\n", "\n", " # Put all columns which are not weird MATLAB ones into a dataframe\n", " df = pd.DataFrame()\n", " for k in mat:\n", " if '__' in k:\n", " continue\n", " df[k] = mat[k].flatten()\n", " df['date'] = f.split('_')[-1].split('.')[0]\n", "\n", " all_df.append(df)\n", "\n", "all_df = pd.concat(all_df, ignore_index=True)\n", "all_df" ] }, { "cell_type": "code", "execution_count": 9, "id": "42d98013-83a4-4b54-8883-64c6f7e62b69", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEGCAYAAAB1iW6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxG0lEQVR4nO2dfZRV9XnvP88+M8OLIiD4ggwjGtRGME1gwsvSGzUhrWRRbcDEt8aaG0N6l95bb9PepE0ytfRl2dvV1twbrDHGmqYIKpBgvdoYE8xLI8iciYmAwSBxhgMoiAeCBZk55zz3j332mX327HPOnpnzPs9nLRZzzt5z9m8vhu9+5vt7XkRVMQzDMBofp9YLMAzDMMqDCbphGEaTYIJuGIbRJJigG4ZhNAkm6IZhGE1CS60uPH36dJ09e3atLm8YhtGQxOPxN1X1rLBjNRP02bNn093dXavLG4ZhNCQi0lvomFkuhmEYTYIJumEYRpNggm4YhtEk1MxDD2NgYIBEIsE777xT66VUlfHjx9Pe3k5ra2utl2IYRgNTV4KeSCSYNGkSs2fPRkRqvZyqoKocOXKERCLBBRdcUOvlGIbRwNSV5fLOO+8wbdq0MSPmACLCtGnTxtxvJYZhlJ+6EnRgTIm5x1i8Z8OoB+K9SdZs2UO8N1nrpZSFurJcDMMwKk28N8nWvUeYOrGN1U/upD+Voa3FoWv5XJIn+ll84TQWnD818md43wOwde+RIV/7P8v7vijXGAkm6IZhjBnivUlueXAr/akMjggZVTIK/QMZujbvIKNKW4vD2tsX5wQ3KMLeZ5wayKCAI9DiCIgwkMrgCDiOkM7kf1a8N8nH7/8JaQUB/vqjl3Hzoo6y3p8JeoDTTz+dt99+u+g5v/71r7n00kv53d/9Xb7yla8AcNVVV3Hw4EEmTJgAwDPPPMPZZ5/NqVOnuPXWW4nH40ybNo1HH30Ua3lgGNXFE+UDR0/Sn8qQUUAVxxEERXziPpDKsHXvkTzx9kfxT+84SH/KFXPA/Z60otl30grptPu191kA/2NdD9m3UeAL33qJS86dVNZIveEFvdK/woTxpS99iQ984AND3l+7di2dnZ157339619n6tSp7Nmzh/Xr1/O5z32ORx99tCrrNIxmJur/fb8otzhCS8whnc7Q6rNZPPtlIOW+77dNvAeAF8WnM650C+RF6GmFdGZwApwArS0OUye2ccuDW3lnIJO3Ls1+vgl6luDT0/9rUsWuGY/zxhtvcM0110TqRbN582buvvtuAK6//nruvPNOVNU2Qg1jFAzn/75flNMZ5YaFs5g5ZUKeaF9y7iTW3r44zwNfs2UPUye20dbiMJDK5KJ4xc0mufyi6SybNyPnoe9+/XjOtnEE5p43mQumn8b/+d4rQ8Qc3AeBd61y0dCC7v+H8v+aVCkymQyf/exn+dd//VeeffbZIcc/+clPEovFWLlyJV/84hcREfbv38+sWbMAaGlpYfLkyRw5coTp06dXbJ2G0eyE/d/33g9G7IsvnJYT5dYWh5Xz2wvaKQC7Xz8eulkajOLvWnpx3nW8rx/d3sfOg7/m54lj/CxxrOA9tDjlD+oaWtCD/1DlftoFue+++/jIRz5Ce3v7kGNr165l5syZHD9+nJUrV/LNb36TW2+9taLrMYxmI6qNEvy/f/zkADd89XnSGWVc69CMlbDoe7/PT+9PZXzRteRslYFUhuSJfu64eg4Al5w7acgGqf9zVz+5M7dZWop0Rs1y8RP8h6q03fL888/zox/9iPvuu4+3336b/v5+Tj/9dO655x5mzpwJwKRJk7j55pt54YUXuPXWW5k5cyb79u2jvb2dVCrFsWPHmDatsg8ew2hEwmwUyE8F3NSTQIGV89tzG5RzZ5zBgz/+Famsf31qIMOXvv0SGYXWmHD3tfPyUgtzfnrMcb3vjGuBeiIOSswRVDXngXv2i/9zvvCtl3i8ex+pbDbLivnteZulxfD8dbNcAiw4f2rVNkPXrl2b+/rhhx+mu7ube+65h1QqxdGjR5k+fToDAwM8+eSTLF26FIBrr72Wb3zjGyxZsoQNGzbwwQ9+0PxzwwghaKNs7EmwqSeR28xU3GwSgMe29+E4Dql0hudfPZK3GQnkskn608qXvv0SCnmim1FIpzPcuLCD86ZMGGKnBG0W73s8IUY1m9mSvU4qw879x3IPiFjM4foF7ZwxroXH4vt46z8HcmuLCdy4sIMVWeunnDS8oNcDp06d4rd/+7cZGBggnU6zdOlSPv3pTwPwqU99ik984hPMmTOHM888k/Xr19d4tYZRH8R7k3kR99SJbTgikI2M3zx+Kmdf+MUTIJUByWTyImrPLpnfMYUXXhus/MwoOftEIM+q8Ytq0E4B15rJpTky+Dne1+CKfEbh54ljtLY43LBwVp5P/9B//Cq3lpgj/OV188qef+5hgh6gVA66x2233cZtt90GwGmnnUY8Hg89b/z48Tz++OPlWp5hNAXx3iQ3fc21PmAw4s5kc8NvWzKbh37yWk40Y47bIsOL0FsccJyh6YeehXHT17YykMrQEhME16/2BHzF/PZQmzbst33Pq/dE3QFashG6F4m/+9xJ/DxxDMWN+mdOmZD7nK17j+SsIAFueP+siok5mKAbhlEhwjY4/QU+XqQL+RG3oOw8+GtSafe4K4SuReGP6CE8qwVg3afzN0GD50W1Ovz7dMXK/G95cGtockZYhk0lMUEP4aWXXuITn/hE3nvjxo1j27ZtNVqRYTQWhTY48wt8Ckfcy+bNYPtrbw2xRoJCXEiYg+eOxqsutE/nf69Qcka1EzfqTtDroejmsssu48UXX6za9VSj7IsbRn1RLMUwr8Iymye+/+jJnCfuFvh05KotwyLuME+7XimWnFHNxI26EvTx48dz5MiRMdUT3RtwMX78+FovxTAiUyrFcOrEttxGYkbh+MkBNsQTPk9cchuHfkp52kZx6krQ29vbSSQSHD58uNZLqSreCDrDqAcKRd7+9zf2JAYzUFIZ7v/Bq2z5xaFcYc/K+e2DvU5giCf+sc5ZJtYVoK4EvbW11cawGUaVCVY7hvVIeWRbX64xVWvMzQnPpe0JfD8r5uA2sVJgXOvgZmCYJ26Un7oSdMMwqkvQOvEX3vh7pHRt3pFLv+tPK54hKrhNqF7aP9izxMnaKSsD6YGN5Ik3KibohjGGCVZneoU3/dnuglMntrF17xEyvo37mEDM14L2hvd3sPuNnbmhEauvmxeaHmieeOUpKegi8hCwHDikqvNCjt8CfA73YX0c+G+q+rNyL9QwjPITzJNeMb+duedNztkrq5/cSdfyuTmR9wQ7GG1b9F0fRInQHwa+AvxLgeO/Aq5U1aSILAMeABaVZ3mGMXwe2dbHo9v7OOeM8XzmynfVVGCqOYBlJNcKy5P2InJ/t8GwXGqLvuuPkoKuqj8UkdlFjv/E93IrYLsdRs24a/1P+faLB7KvjvHMrjf4gw9cyOc/8u6yX6uYgMZ7k/zt0y/neoq0xYR1q5ZUTPSiDnwIW3NQjMPaUptgNwbl9tA/BTxd5s80jFD84rT79eP843d3c/jt/iHn3f/DvWzde4Rv33lF2a67qSeR1zrVPwj4/h+8yrO73shrJtWfVjb2JEYsimGDioNRddiwlygZLEGqXd1olI+yCbqIXI0r6AX/14jIKmAVQEdH5RrUGM3PPU+9zAM/2ptraVqq1vbFxDHuWv9T7r3xfaO6bnDiOwwK6Hd3vs5Xf7i34Fr2vHF8VNf0T9DxT9RZe/vi0Kg6SgZLocn2FpE3JmURdBF5D/AgsExVjxQ6T1UfwPXY6ezstHp3Y0Tc89TL3P/DvbnXUX+QvrPz9VFf24uE/a1TEeHJnx3g5deLC/ap1NC5ksO5pifE3tR5vzDfcfWcIVG1v/VroQwWqM1sXqMyjFrQRaQD2AR8QlVfGf2SDCMcz+p4ZFvfiL5/XGts1GvwR8KOI6TSbhvVUmIObsfAKASj5WD0HSzS8ewUf8vW4FoLZbB42SnVnM1rVI4oaYvrgKuA6SKSAP4caAVQ1fuBLmAacF+2/0pKVTsrtWBjbOGJmzc5Jmx6elQWzj5z1Ovx/OVNPQm27T3CnsP/Gen7/uADF4b2wQ7zxsOi5WD0HZYmGPa9pTJYvGPVnM1rVI4oWS43lTh+O3B72VZkGFnivUlueOB5UunRu3MxBz5z5buGfP5wN/78G6L9RdYVc9zJORefM6ngqLEwAS4ULYe1gy3W4dBvxUTJYLFN0ObAKkWNuuWrP3i1qJi/f/ZULjpnUq78fMeBY+zcfyw3PQbcPiNL330OfxDIRx+ubxxVyB2By+dM566lF4emMpbKTBlOtFzKmvG+N3heoZxyE/LGxwTdqEvuWv9Tnn35jaLnxHuTXJSNgAF2HjjGuBYHR9yWrTHHrWr0Wx2euO0/erKob+y3enYeOFZQyFtiwgcvOZvnXjmcK4UvJObBB8hoouWo1kyh80y8mxMTdKOueGRbX8F88iAZdc9/vHsf6Yzm+m+D228kTMxzE3NiTt6E9v1HTxLvTQ4RwUwJt+fjnbP4m49eNqI88bDMFIgWLUe1ZmzDc2xhgm7UBfHeJF/9was8s6t4VB7GQEjknFFInsh/KPjFLZ3OcONCV+wf797H+hf62BBPcP0CN9qPIubjW8NnREaNxmHkVkdUa8Y2PMcWJuhGzfB86UPHT/Hc7kOhwgxw/pkTOXjsJKlAFF6M1pgMEa+wND5vKrs3Ku2RbX20xoQWx513Gbyc4G6wzj1vMje8vyPU1ggr4CkUjY+UqNaMbXiOLUzQjZoQ701y09dcESxEiwPL33Me9974viGetgLzzpuc87dTGXcW7YKOKcw5Z1Iucl6zZU/etPaguO1+/TiOSF572IG00j5lPAd/fSo3tAHcyTuXtU/m5deP89L+Y+x+IzyP2yvgKVc0Xoion2ee+djBBN2oOvHeJKv/bWdRMQdYfd1lOQ+8mCitCAxS8K7h98EFd4LO2tsXc8fVcwbX8eRO0hkd0j4gcfSdvGsI0NbqMG+mO8yhWGbKivntoWsyjEpjgm5UjXhvko3Z1L9C9oqHI0M98EL4xT4siwXIK6TxV1R6ZfxO9pphy4oJfOjd5+Ty2Df2JCJlppiQG9XGBN2oOJ6QP9a9L1KRkGdZDHcDLyyLxfPHHRiyKRiMrLuWz2XHgWNsiCdIpzOIgCKoKj/85eFcb/Vq5HFXs4+60TyYoBsVxRPZqCX7AlxxUXhhTinCsljOmzIhz0MPRvJdy+cOOebNwjxw9CTrXugrmRpYbgrljpvIG6UwQTcqyqaeBKeKiPmcs07jgrNO5wclCnOK4d8wDXrZUUvuw8rqvd8sqp3yF5Y7DtF6mRtjGxN0o2wEhyls6kmwbltf0fa2//UKt2nVSKPPsF7hwYg7uL4DBapEw3qClzvlL8p9huWOW4GQEQUTdKMsPLKtj67NO8io4jiCKnkpf2H4Nz6j2BjBB0ZYCX/yRH8uiyX4vTl/3RFafFPrw4ZB+EvkyyWcUa2UQg8SKxAySmGCboyaeG+Srs07SGUFPBNh49OR4W18Bjc8USWV0bwS/kJCF+9Ncu+zrwz66xnlg+8+m3cG0iybNyN0GEQ5IuAo5f8QbqWEdVe0AiGjFCboxqjwxDIVsYSzxRFuv+ICJk1oLSlMfkEMiiG4qYj+zc+wTU+vj7o3Ms4Rt2nXD145TCqdYftrb3HJuZPKXiIftfx/OFaKFQgZpTBBNyITjDg9m8VvrQQLdD5w0XQUmDvjjEgi7r9W0Bv3xDCWjdC9qDy4+en/Xkfc6F2za7t8znQ6zpw4JHul3KX5w2nGZVaKUS5M0I1IBAX2tiWzc0Oa/TiOkMkKqCOw6MJpoZ52KYKCmDzRnyeG3jlhUbl/01N1sB+LAsvmzeCScyeFZq+MNgL2P/CiNuMyK8UoJyboRiT8Ats/kAkVc3AFNOa4xTijiTgL9QoPimG8N5nr1+JZK464DxbJ9ndJ+x4wyRP9FcteKTX+rRBmpRjlwgTdiIQnsF7/FV8vK7cDYUzQrAVSLHWwFP4ot5QgFrJW0goxhRsWdjDvvMmsfnJnxRtlRRn/ZhiVxgTdiMSC86fStXxuXjaLRywmrL52Xk7EYXDy/HAIi3L9jbSCdovfWkHVLdX3ereoMnPKBG5e1BE6ULncWN9xox4wQTfyCJu8s6knkdtU9LeZ9dCM5vK/hzur00+hjI9gDjkipNJD88lvWzKbB3/8KzKqeSmRlbA0qlGEZBjDxQTdyBGWWXK3r81ti+N605pWYg44Tn5xDoxs5Fmh0v3Qz0wr4ForqbRyWfsZzJ05mZXZTJcPzz237KIa9pCrdBGSYYwEE3QjR1CMn95xMJfzDZDOgOO4XzuOw92/M9QrH671EKV03/+ZMS9CT2XIQHbQxPHcQItKdD0MireV4Rv1igm6ERohx2IO41tjtMQk17vckcE0wHQ6vMx+uNZDWHqiZ92s2bIntN84wL3PvsJ/7Hmz4qIaJt7mlxv1ign6GCdYUn/lxWchwHO7D/G9l9+gxRF+69JzmD5pXGjGSFizqVJRcql8bX/BkjdlyM+C86dy19KL2f7aWxUR1VLrM7/cqFdEQza58k4QeQhYDhxS1XkhxwX4MvAR4ARwm6r2lLpwZ2endnd3j2jRRnnwyva9SBe8IcjujM2MutN6bljYwcxsaT2QFykPdwM0zMIIfuYNX30+l0njADcu6mBTT6Iq/cFLrc/E26g1IhJX1c6wY1Ei9IeBrwD/UuD4MuCi7J9FwD9l/zbqGC8K9oTTK9lXIJNxOyYKbpHQhniCVHpoKuFIGloFLYyNPYm8h8W9z76SP5jZEQRCr1OJTUjLJzcamZKCrqo/FJHZRU65DvgXdUP9rSIyRURmqOrBci3SKC/B7ogA7zrrNPreOpHrj+JtThaa2gOBzcqYw4v7jvKFb73EiuwGZVhUG9zg9B4WXgfFgfRg35WYI6y+bl7BUv1KYP640ciUw0OfCezzvU5k3xsi6CKyClgF0NHRUYZLG8PFs1mCvcr7kie521cc5O+PUkhMPS95U0+CR7f38d1dbwDwWPc+BEhlNNS28Pzn4MMCyA1svjwwhq6SnnXQujF/3GhUqropqqoPAA+A66FX89pjHa9A6PHufbko2E8wayVqCb7X5zvtmzI3kNachTOQyrCpJ8HGgAfuZbI8HncfFi0x11rxfkMIjqGrVI53sZxyw2g0yiHo+4FZvtft2feMOsETLa8nOLiWBgy2unUcYf/Rk8R7k8DQzc5iHRMXXziN1pjQn01vbA2IszLogZ8ayLD633bS9TtzswsY9PDDfkOoNJZTbjQT5RD0J4A7RWQ97mboMfPP6wtvULNfzL1MFtVsSX9GWf9CH5t6EqyY3z4skVtw/lTWrVrCxp4EAkM8dIAN3fvoz/5m8LPEMW564Hk+1jmLlNdQy9c+oNJEaXNrGI1ISUEXkXXAVcB0EUkAfw60Aqjq/cBTuCmLe3DTFj9ZqcUawyfem+Tx7n05MY85wrzzzmDJhdN4+PnXGEhl8lrMDqQyCMMfuhBmU/hff6xzFmu39eVee7ZPtcV0NG1uDaPeiZLlclOJ4wrcUbYVGWXD2wD1Kj0FQDVXLu9lsni9xD1hXTG/nRXz28smcvHeJIprxQz4bJmV89tZWcbrFLt+oVF2lpZoNBNWKdqkBH3zYMGQv8weCG0xG7WpVpgYB2d6ep0SvarTlb6xcZUU02Kj7MxiMZoNE/QmxIvM83xzgduvuCBns4SlIBYS5UKC7W9p+7HOWbnZngUHT2SU35w1peI+ebGIPDjKziJzo5kwQW8ywjJaAFCYNKE1spiVKoHPG0mXVh7Z1sfGnkQuL33w+uUZSReVKBG5pSUazYoJehMR702y+t928s6AmxQuuJE5Cm2twxOzYGQbzCX3hNITbn/OuX8TtiUW3ma3UlhEboxlTNCbhHhvkpu+tjU3jALcjceR5nYH0/kOHT+VE2+/UG7sSbAhnsgNulDI6w9z/YJ2bl5U2argKN0RTciNsYAJehPgeeZ+MQc3VTBMTKN0KfRmiD694yBzZ5zBQz95LS/10S+U886bzNM7DrJs3gwuOXcSm3ytArzBE5XC0hANYxAT9Aaj0Di0UwP5Yt4Wk1yBT/D7o7S8jfcmc9kpz796JDdLVHAfFP5eL9552197q+qCammIhjGICXoDERxGcf2CdgTyUhPf0z45b8ZmkKil7v7z0Px2ut5avD4utRRUq/Q0jEFM0BuIvMySVIZ12/qIOYP9WBS44f0dRT3rYgJYzIvuWj6XHQeOsSGeYN0LgxkttRBU645oGOGYoDcQnnj6M0v8XQ4dgeSJ/qKfUUgAo3jRa7bsIZUebLK1qSfBX3/0sqoKqnVHNIzCmKDXOf6Ky+SJfrqWz2XngWM83r2PdCZrgYiQyhbxTJ3YVvIzwwQwinWy+MJptMQc+lPuA+Xx7n25YqJKV3sWK903MTcMFxP0OsYfjWayXRHHtbr2B51uhL5yfju7Xz9O1+YdZFRZ/eROLjl30rBFLsw6CVobC86fyvUL2lm3rS9X+VlpQbXSfcOIjgl6HZO3MYkr4P0DmZx4t2XTApMn+vN6tEQV2WJeNDBkA9ZrprWpSuPgwAqFDGM4mKDXMV7U7AmagzuIIijeI9mYDIt8/QVI/gHQ3gbspuxGaDUF1QqFDCM6Juh1ihc9+1vchrW6HU6mRyEvOhj1r719MVMntuGI24PFX9pf7bREy2IxjOiYoNchpYp/CrW69Z9TqAApzIsWyY/6vb4t6YziCIgjaKY6zbXC1m4RuWFEwwS9Dgn6xht7EsMSuLAHQjEvOhj1ezNAvfz2j3fOYuaUCTVNSzQMozQm6HWI3zeOOcKGeIJUOrrAhaX2BT/zwNGTANxx9RzivUlWzG/Pmwca7MdiQ5sNo/4xQa9D/L7xgaMnWfdC37AErtBGor87olft2bV8bq4XS1t2/FwtfWsr5TeMkWOCXif4fWMg7+uNw0wTLCTIXu8Vr9pzIJXh6R0HQyPiWvnWtglqGCPHBL0OyB/ZBoqQySjjWou3gy3WBtcT5HhvkjVb9uTOCUbAy+bNYPtrb9VVRGyboIYxMkzQ6wC/b+wWEbnbkf0DhdMEo2weFjon+IAIy5qpFlF6sxuGEQ0T9Dog2HTLw8kOkggjbERcUBijbjDWKiK2jBbDKC8m6DUirOmW1542lXYbba2+bl5BgcvLWok5PN69j1RG84SxUH+WWoqoNdoyjMphgl4D/FOGvMEUMccV8JXz2yNZEH7rZP/Rk6wPyYQJs1f8Jf3VFlFrtGUYlSWSoIvINcCXgRjwoKreEzjeAXwDmJI95/Oq+lR5l9ocePM//faKN1i5a/MOHv3MEu64ek6kz/JvfG7qSdA/4FZ9+lvoBu2UaqcFFovIrdGWYZSXkoIuIjFgDfBhIAFsF5EnVHWX77QvAo+p6j+JyKXAU8DsCqy3ofFHqF5k7vfMM8NoRxvcTOxaPrdgC91aTfiJEpFbRothlI8oEfpCYI+q7gUQkfXAdYBf0BU4I/v1ZOBAORfZLPgjVEfg8jnTmTvjDB788a/IZJS21pF1Slx7++KCLXRrOeHHInLDqC5RBH0msM/3OgEsCpxzN/CMiPx34DRgadgHicgqYBVAR0fhuZfNSLw3yf6jJ2mJOaTTboR619KLWXD+VD4899xhidzWvUdylo2X2hjcJN1/9GQuMq+VZ26tbw2jupRrU/Qm4GFV/XsRWQJ8U0TmqWrGf5KqPgA8ANDZ2akhn9OU+KPkFkf40LvPYfqkcbnjwxW5qRPbclZNJvvas1I29SR4vHsf619w+5fXcuPRqj4No7pEEfT9wCzf6/bse34+BVwDoKrPi8h4YDpwqByLbGSCm6CptPL9Xxwio5obGDFczzx5oh9HyFk33mDoXGl/RuvG5rCI3DCqRxRB3w5cJCIX4Ar5jcDNgXP6gA8BD4vIu4HxwOFyLrQRCW6CFpo4VErwhpPuZzaHYYxdSgq6qqZE5E7gO7gpiQ+p6k4RWQ10q+oTwGeBr4nI/8TdIL1NVceMpeKnUJqetwm6bN6MIROHSjGczcVa2xxWym8YtSOSh57NKX8q8F6X7+tdwOXlXVrjkeeVxxyuvPis0E3Q4fZO8Y+D8/LM/VF3vUz4qXUVqmGMdaxStIzkzelMZXh21xu0xka3CRrvTbL6yZ2kM+5sz3QmP8+8nkTUSvkNo7Y4tV5AM+H515J97d8EXf9CH7c8uJV4b7Lk53gtb/1ph/6qUk8sIVxEa4V3/zHBSvkNowZYhF5GgqmD6YwOGcBcKmottAGa8+LJF8taTvgJs3osTdEwaocJepnxhG1FtslWcABzKcHd2JPIpTiGDXNOnugfMoWoFiJarALVhNwwaoMJ+igJtsEN25iMugka702yIZ7I2SuxbD/0oEgGpxDVQkTNLzeM+sMEfRT4o9SMus22xrW6NkkhcS+GN+8T3M/6WOesEU0qqhR+i8WGORtG/WGCPgr8USqQ663idT2MKrj+KN8vkivmtxe9ZjUj47AHifnlhlFfmKCPAi9K9W9YDrcSNGwT1B/dBzceaxUZhz1IwmadGoZRO0zQh0mh3uKehz6cTdBgnxdvE9QbcBF1yHM1MIvFMOofE/RhELW3eJRN0LA+L0GhLGSv1GIT1FISDaP+MUEfBsFK0HuffYW7ll6cOzacTdCwPi9eawAPr+Qf1ZpExfXSUsAwjGiYoA+DoGf+41++yba9R0CEVDpa1kmhDdCgmHsl/xlVHEfoWj63qmJaTy0FDMOIhgn6MPBsh3uffYUf//JN1/dOK6B5JflRbJawDVDvnK17j3Dg6ElfOqTmep5XC8szN4zGwwR9mCw4fyp3Lb2Y7a+95Y57cwREch0Vi9kiYW1wvQ1QGDrZyN+psdp2i22CGkbjYYI+AoIbhEDBzcLhFOP4BT+dUW5YOIuZUybUbNKQbYIaRmMhtZpD0dnZqd3d3TW59nAYzcCGMB8aiov/LQ9uzQm++daGYQQRkbiqdoYdswi9CH5BdkRYfd08bl7UEVnkt+49kssx7x8oXYxjUbFhGKPBBL0Ifgsko0rX5h0ArH5yZ6Tsj6kT23KNtjLZ16Wo5bQhe5AYRmNjgl6ExRdOw8n2MwfIZJSndxyMnP2RPNGPI+RyzcMyVepBSC1F0TCaA5tYFILXnhZg9XXzaHEEB2hrdVg2b0bkqTz+CT5tIed6Qvr3z+zmlge38si2vtykompST1OPDMMYORahB3hkWx9dm3eQzijjWt1o9dHPLMmLoqP2Ny/liedVno6gS2O5sBRFw2gOTNB9xHuTdG3eQSrbD9fbyAwKXCGf+5FtfTy6vY9zzhjPZ658V8lyeb+QDndU3Wiw0XGG0ZyYoPvYuvdIzi8HtxXu1IltkfzlR7b18Wffein76hhbdh/iL66dN6QS1E+wW+NwRtWNFBsdZxjNiwm6D3+vFi9NMXmiP9Im6NM7Dua9HkhrqIVSrOFVVCtnNFhJv2E0LyboPsKsh3hvMpK/vGzeDH70yzdzrx1xqz39PV52v348T+RHOqpuNJhfbhjNS6RKURG5BvgyEAMeVNV7Qs75OHA37iS2n6nqzcU+s1EqRSF6aqHfQ7/qkrPzLJSu5XPz/HnBHQJdi03QekiVNAxjZIyqUlREYsAa4MNAAtguIk+o6i7fORcBfwpcrqpJETm7PEuvDqUErlDkHPy+mxd1cPOijtxxv4Wyde8R0pnBh6eERPDVElfzyw2jOYliuSwE9qjqXgARWQ9cB+zynfNpYI2qJgFU9VC5F1oporS09Z/rz3optVkaFM5xrQ79AxkcR7j9igt4+PnXzPowDKNsRBH0mcA+3+sEsChwzsUAIvIfuLbM3ar678EPEpFVwCqAjo6O4OGaEDUXPCj8K+a3D2tzMcyf//Dcc836MAyjbJRrU7QFuAi4CmgHfigil6nqUf9JqvoA8AC4HnqZrj1i4r1JDhw9SYsjpDNaNBc8mB0iUHJzsdQIN7M+DMMoJ1EEfT8wy/e6PfuenwSwTVUHgF+JyCu4Ar+9LKusAHnDJGIONyycxbzzJhfMBfdnh8QcAShpz9RDfxTbADWMsUMUQd8OXCQiF+AK+Y1AMIPl28BNwD+LyHRcC2ZvGddZdvKGSaQzzJwygZsXdeRtZAKs2bInJ4Zrb1/Mxp4EG+IJ1r3QV1So6yHfu14eKoZhVIeSgq6qKRG5E/gOrj/+kKruFJHVQLeqPpE99lsisgtIA3+iqnXd4alQPrZngxQSw617j5BKlxbqesj3roeHimEY1SOSh66qTwFPBd7r8n2twB9l/zQEXsS9qSdBmJkfFMNNPYlciX4Uoa5Vf5ThjLwzDKO5GHMj6KKmHvrHwcViDqiSyoRXeNYLwx15ZxhG42Ej6LIEBW9lkdRDf4S9/+hJ1r/QlzsveaKfO66eM+Szay2cYRZLsZF3hmE0F2NK0Df2JHIzPgdS7t/FLAm/n76pJ1HwvHrZfDSLxTDGNmNG0OO9STbEB/3ymCOsnN/OyvntoZF1MOKOOqiilpuP1tfcMMY2Y0bQvewUcBtjfaxzVp694icvR90RPtY5ixXz24fYLB61iozDbB4rVjKMscuYEfSg6K6Y317w3Lx2AGnlkW19bOxJFLRSahEZ14vNYxhG/TBmBL1UmqIfT/w9vz3YEbEeIuN6sXkMw6gfxoyge2zsSdCfzSsvFXF7VaHp9KCVUi+RsW2AGoYRZEwJ+nCiWi/iDm6artmypy4iY9sANQwjSNML+mgrJ4NWSj1FxrYBahiGn6YW9LBslagDLIpF7hYZG4ZRjzS1oPsLibxslXGtQ33veG+S+3/wKt//xSEyGQ09x08tIuN6qEQ1DKO+aVpBDxYSwdBsFe+8mx54nv704Jn9A/WVNVIvG7GGYdQ3Tq0XUCn8hUTgVobGhCG+99a9RxhI5ycyOo7knRPvTbJmyx7ivcnKLzyEsM1cwzCMIE0boU+d2EbGp9OfvuICJk1ozVkWnoUxdWIbrTHJRegxR1h93byCs0RrER3X00asYRj1S9MKevJEP4JrszjApAmtudL9oEjffe08dhw4hgAr5rfnCXY9FPDYRqxhGFFoWkFffOE0xrWGR7VBkU6e6OdvPnpZwc+ph+jYUhQNwyhF0wm6PxukUFQ7HJG26NgwjEahaQTd61n+ePc+BtKa88ILdUhcOb8dzf5dSqQtOjYMoxFoCkH3PHEv5xwglVG6Nu/gknMn5YnxI9v66Nq8g4xqbmpRvWC55oZhjIamEHTPEw92UcyoDsk579q8g1Q2/aW/jroU1kM2jWEYjU1T5KF7nrgj5P1pC9kMTftyGR2RIf55rXLOLdfcMIzR0hQR+oLzp9K1fC5dm3eQziitscEpQ8HN0HGtDv0DGZxAvjnUNkqul2wawzAal6YQdHDzzjOqKJDOKOdNmTBEjOt5Nqhl0xiGMVoaVtC9rBYvUyVqhFssY6XWUbJl0xiGMRpEtdRANhCRa4AvAzHgQVW9p8B5K4ENwPtVtbvYZ3Z2dmp3d9FTChLvTXLT11xrBKAtJqxbtQRg1BGuZZoYhlHPiEhcVTvDjpWM0EUkBqwBPgwkgO0i8oSq7gqcNwn4Q2Db6JdcnK17jzCQGmy8NZB2s1nuuHrOsES4VrNB7aFhGEYliGK5LAT2qOpeABFZD1wH7Aqc95fA3wJ/UtYVhrD4wmm0tji5CL01NjRbBYoLZ602QC090TCMShFF0GcC+3yvE8Ai/wkiMh+Ypar/T0QKCrqIrAJWAXR0dAx/tVkWnD+VdZ9enOehD1ewa7UBWg/NvgzDaE5GnYcuIg7wD8BnS52rqg+oaqeqdp511lmjvTTnTZlQsHS/VF63twEa1iO9ktTquoZhND9RIvT9wCzf6/bsex6TgHnAcyICcC7whIhcW2pjdKQEo++wOaGlMlZqlSZo6YmGYVSKklkuItICvAJ8CFfItwM3q+rOAuc/B/xxJbNc1mzZw98/s5uMur9iOI7kerP4rRXbfDQMo9kYVZaLqqZE5E7gO7hpiw+p6k4RWQ10q+oT5V1uafzRt4gr5mGedD3kddtDxTCMahGpsEhVnwKeCrzXVeDcq0a/rOL4bYupE9tY/eTOSMVA1RZXy2gxDKOaNFylqF+UvV7nl5w7qaRQ10JcLaPFMIxq0lCCXkiUo1grtRDXWrcSMAxjbNFQgl5KlItZKrUQV8toMQyjmjSUoBcT5VKWSi3TFE3IDcOoBg0l6MVEOYqlYuJqGEYz01CCDoVFORi9T53Yxpote8zqMAxjzNBwgl6IsFRGSxc0DGMs0RQzRT0WnD+VO66eQ/JEv83nNAxjzNFUgu5hDbAMwxiLNKzlUixF0dIFDcMYizSkoEep+qxmRov1azEMox5oSEGvp5J669diGEa90JAeetAj91IU473Jqq+l1CANwzCMatGQEXo9pShavxbDMOqFhhR0GPTI12zZU1P7xTZgDcOoFxpW0D3qIUK2lgKGYdQDDS/oFiEbhmG4NLygg0XIhmEY0KBZLoZhGMZQGk7Q473JmqUoGoZh1DMNZblYEY9hGEZhGipCtyIewzCMwjSUoFsXRcMwjMI0lOViKYqGYRiFaShBB0tRNAzDKEQky0VErhGR3SKyR0Q+H3L8j0Rkl4j8XES+JyLnl3+phmEYRjFKCrqIxIA1wDLgUuAmEbk0cNpPgU5VfQ+wAfjf5V6oYRiGUZwoEfpCYI+q7lXVfmA9cJ3/BFXdoqonsi+3Au3lXaZhGIZRiiiCPhPY53udyL5XiE8BT4cdEJFVItItIt2HDx+OvkrDMAyjJGVNWxSR3wM6gb8LO66qD6hqp6p2nnXWWeW8tGEYxpgnSpbLfmCW73V79r08RGQp8AXgSlU9VZ7lGYZhGFGJEqFvBy4SkQtEpA24EXjCf4KIvA/4KnCtqh4q/zINwzCMUpQUdFVNAXcC3wFeBh5T1Z0islpErs2e9nfA6cDjIvKiiDxR4OMMwzCMChGpsEhVnwKeCrzX5ft6aZnXVTbivUmrLDUMY0zQcJWiw8G6MxqGMZZoqOZcw8W6MxqGMZZoakG37oyGYYwlmtpyse6MhmGMJZpa0MG6MxqGMXZoasvFMAxjLGGCbhiG0SSYoBuGYTQJJuiGYRhNggm6YRhGk2CCbhiG0SSIqtbmwiKHgd4Rfvt04M0yLqeeGUv3CmPrfu1em5NK3+v5qho6UKJmgj4aRKRbVTtrvY5qMJbuFcbW/dq9Nie1vFezXAzDMJoEE3TDMIwmoVEF/YFaL6CKjKV7hbF1v3avzUnN7rUhPXTDMAxjKI0aoRuGYRgBTNANwzCahLoXdBF5SEQOicgO33tnish3ReSX2b+boj+uiMwSkS0isktEdorIH2bfb7r7FZHxIvKCiPwse69/kX3/AhHZJiJ7RORREWmr9VrLhYjEROSnIvJk9nUz3+trIvJSdmh8d/a9pvs5BhCRKSKyQUR+ISIvi8iSWt1r3Qs68DBwTeC9zwPfU9WLgO9lXzcDKeCzqnopsBi4Q0QupTnv9xTwQVX9TeC9wDUishj4W+AfVXUOkAQ+Vbsllp0/BF72vW7mewW4WlXf68vJbsafY4AvA/+uqr8B/Cbuv3Ft7lVV6/4PMBvY4Xu9G5iR/XoGsLvWa6zQfW8GPtzs9wtMBHqARbgVdi3Z95cA36n1+sp0j+24/7E/CDwJSLPea/Z+XgOmB95rup9jYDLwK7IJJrW+10aI0MM4R1UPZr9+HTinloupBCIyG3gfsI0mvd+sBfEicAj4LvAqcFRVU9lTEsDMGi2v3NwL/C8gk309jea9VwAFnhGRuIisyr7XjD/HFwCHgX/O2mkPishp1OheG1XQc6j7CGyq3EsROR3YCNylqr/2H2um+1XVtKq+Fzd6XQj8Rm1XVBlEZDlwSFXjtV5LFblCVecDy3Ctww/4DzbRz3ELMB/4J1V9H/CfBOyVat5rowr6GyIyAyD796Ear6dsiEgrrpivVdVN2beb9n4BVPUosAXXdpgiIt6s23Zgf63WVUYuB64VkdeA9bi2y5dpznsFQFX3Z/8+BHwL94HdjD/HCSChqtuyrzfgCnxN7rVRBf0J4PezX/8+rtfc8IiIAF8HXlbVf/Adarr7FZGzRGRK9usJuHsFL+MK+/XZ05riXlX1T1W1XVVnAzcC31fVW2jCewUQkdNEZJL3NfBbwA6a8OdYVV8H9onIJdm3PgTsokb3WveVoiKyDrgKtyXlG8CfA98GHgM6cFvwflxV36rREsuGiFwB/Ah4iUGv9c9wffSmul8ReQ/wDSCGG1g8pqqrReRC3Cj2TOCnwO+p6qnarbS8iMhVwB+r6vJmvdfsfX0r+7IFeERV/1pEptFkP8cAIvJe4EGgDdgLfJLszzRVvte6F3TDMAwjGo1quRiGYRgBTNANwzCaBBN0wzCMJsEE3TAMo0kwQTcMw2gSTNCNMYeIfCHb4fHn2W6Ai0TkOa8rYPacThF5Lvv1VV6HRN/xh0XkegyjjmgpfYphNA8isgRYDsxX1VMiMh03fxjgbBFZpqpP126FhjFyLEI3xhozgDe9Ah5VfVNVD2SP/R3whZqtzDBGiQm6MdZ4BpglIq+IyH0icqXv2PNAv4hcHfJ9/yVrz7yY7RB5bTUWaxjDwQTdGFOo6tvAAmAVbtvTR0XkNt8pfwV8MeRbf6TusIb3ZjtEPlHptRrGcDFBN8Yc2ba9z6nqnwN3Ait9x74PTMCdGGUYDYUJujGmEJFLROQi31vvxW2e5OevcIdRGEZDYVkuxljjdOD/Zlv3poA9uPbLBu8EVX1KRA7XZnmGMXKs26JhGEaTYJaLYRhGk2CCbhiG0SSYoBuGYTQJJuiGYRhNggm6YRhGk2CCbhiG0SSYoBuGYTQJ/x87stYnfCYRQwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "all_df.plot(x='SNH', y='I_450', style='.');" ] }, { "cell_type": "code", "execution_count": null, "id": "755b4ba5-3d2e-4cf7-bf71-01123e952f34", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 5 }