References

1

Jacques Mourey and Ludovic Ravanel. Évolution des itinéraires d'accès aux refuges du bassin de la Mer de Glace (massif du Mont Blanc, France). Revue de géographie alpine, pages 0–16, 2017. doi:10.4000/rga.3780.

2

R. Hock, G. Rasul, C. Adler, B. Cáceres, S. Gruber, Y. Hirabayashi, M. Jackson, A. Kääb, S. Kang, S. Kutuzov, A. Milner, U. Molau, S. Morin, B. Orlove, and H. I. Steltzer. Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, pages 131–202. IPCC, 2019.

3

Oppenheimer, B. Glavovic, J. Hinkel, R. van de Wal, A. K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R. M. Deconto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari. Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC, 2019.

4

J. M. Gregory and J. Oerlemans. Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature, 391(6666):474–476, 1998. doi:10.1038/35119.

5

S. C.B. Raper, O. Brown, and R. J. Braithwaite. A geometric glacier model for sea-level change calculations. Journal of Glaciology, 46(154):357–368, 2000. doi:10.3189/172756500781833034.

6

R. S. W. Van de Wal and M. Wild. Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Climate Dynamics, 18(3-4):359–366, dec 2001. doi:10.1007/s003820100184.

7

R J Braithwaite, Y Zhang, and S C B Raper. Temperature sensitivity of the mass balance of mountain glaciers and ice caps as a climatological characteristic. Zeitschrift für Gletscherkunde und Glazialgeologie, 38(1):35–61, 2002.

8

G. Kaser, J. G. Cogley, M. B. Dyurgerov, M. F. Meier, and A. Ohmura. Mass balance of glaciers and ice caps: Consensus estimates for 1961-2004. Geophysical Research Letters, 33(19):1–5, oct 2006. doi:10.1029/2006GL027511.

9

Sarah C.B. Raper and Roger J. Braithwaite. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439(7074):311–313, 2006. doi:10.1038/nature04448.

10

Mark F. Meier, Mark B. Dyurgerov, Ursula K. Rick, Shad O'Neel, W. Tad Pfeffer, Robert S. Anderson, Suzanne P. Anderson, and Andrey F. Glazovsky. Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841):1064–1067, 2007. doi:10.1126/science.1143906.

11

J. Graham Cogley. Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology, 50(50):96–100, mar 2009. doi:10.3189/172756409787769744.

12

David B. Bahr, Mark Dyurgerov, and Mark F. Meier. Sea-level rise from glaciers and ice caps: A lower bound. Geophysical Research Letters, 36(3):2–5, 2009. doi:10.1029/2008GL036309.

13

J. G. Cogley, J. S. Kargel, G. Kaser, and C. J. van der Veen. Tracking the Source of Glacier Misinformation. Science, 327(5965):522–522, jan 2010. doi:10.1126/science.327.5965.522-a.

14

Georg Kaser, Martin Grosshauser, and Ben Marzeion. Contribution potential of glaciers to water availability in different climate regimes. P. Natl. Acad. Sci. Usa., 107(47):20223–20227, nov 2010. doi:10.1073/pnas.1008162107.

15

Valentina Radić and Regine Hock. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research, 115(F1):F01010, mar 2010. doi:10.1029/2009JF001373.

16

Valentina Radić and Regine Hock. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience, 4(2):91–94, feb 2011. doi:10.1038/ngeo1052.

17

T Bolch, A Kulkarni, A Kääb, C Huggel, F Paul, J G Cogley, H Frey, J S Kargel, K Fujita, M Scheel, S Bajracharya, M Stoffel, and A Kaab. The state and fate of Himalayan glaciers. Science (New York, N.Y.), 336(6079):310–4, apr 2012. doi:10.1126/science.1215828.

18

Walter W. Immerzeel, L. P. H. van Beek, M. Konz, a. B. Shrestha, and M. F. P. Bierkens. Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110(3-4):721–736, feb 2012. doi:10.1007/s10584-011-0143-4.

19

W. Tad Pfeffer, Anthony a. Arendt, Andrew Bliss, Tobias Bolch, J. Graham Cogley, Alex S. Gardner, Jon-Ove Hagen, Regine Hock, Georg Kaser, Christian Kienholz, Evan S. Miles, Geir Moholdt, Nico Mölg, Frank Paul, Valentina Radić, Philipp Rastner, Bruce H. Raup, Justin Rich, and Martin J. Sharp. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60(221):537–552, jun 2014. doi:10.3189/2014JoG13J176.

20

Alex S. Gardner, Geir Moholdt, J Graham Cogley, Bert Wouters, Anthony a Arendt, John Wahr, Etienne Berthier, Regine Hock, W Tad Pfeffer, Georg Kaser, Stefan R M Ligtenberg, Tobias Bolch, Martin J Sharp, Jon Ove Hagen, Michiel R van den Broeke, and Frank Paul. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science., 340(6134):852–857, may 2013. doi:10.1126/science.1234532.

21

Fanny Brun, Etienne Berthier, Patrick Wagnon, Andreas Kääb, and Désirée Treichler. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10(9):668–673, 2017. doi:10.1038/ngeo2999.

22

I. Dussaillant, E. Berthier, F. Brun, M. Masiokas, R. Hugonnet, V. Favier, A. Rabatel, P. Pitte, and L. Ruiz. Two decades of glacier mass loss along the Andes. Nature Geoscience, 12(10):802–808, oct 2019. doi:10.1038/s41561-019-0432-5.

23

David E. Shean, Shashank Bhushan, Paul Montesano, David R. Rounce, Anthony Arendt, and Batuhan Osmanoglu. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Frontiers in Earth Science, 7(January):1–19, 2020. doi:10.3389/feart.2019.00363.

24

Matthias Huss and Daniel Farinotti. Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface, 117(4):F04010, oct 2012. doi:10.1029/2012JF002523.

25

A. Grinsted. An estimate of global glacier volume. Cryosphere, 7(1):141–151, 2013. doi:10.5194/tc-7-141-2013.

26

B. Marzeion, a. H. Jarosch, and M. Hofer. Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6(6):1295–1322, nov 2012. doi:10.5194/tc-6-1295-2012.

27

R. H. Giesen and J. Oerlemans. Calibration of a surface mass balance model for global-scale applications. The Cryosphere, 6(6):1463–1481, dec 2012. doi:10.5194/tc-6-1463-2012.

28

Brian Anderson and Andrew MacKintosh. Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: The role of debris cover. Journal of Geophysical Research: Earth Surface, 117(1):1–15, 2012. doi:10.1029/2011JF002064.

29

Rianne H. Giesen and Johannes Oerlemans. Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Climate Dynamics, 41(11-12):3283–3300, dec 2013. doi:10.1007/s00382-013-1743-7.

30

Yukiko Hirabayashi, Yong Zang, Satoshi Watanabe, Sujan Koirala, and Shinjiro Kanae. Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrological Research Letters, 7(1):6–11, 2013. doi:10.3178/hrl.7.6.

31

Valentina Radić, Andrew Bliss, a. Cody Beedlow, Regine Hock, Evan Miles, and J. Graham Cogley. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics, 42(1-2):37–58, 2014. doi:10.1007/s00382-013-1719-7.

32

Matthias Huss and Regine Hock. A new model for global glacier change and sea-level rise. Frontiers in Earth Science, 3(September):1–22, 2015. doi:10.3389/feart.2015.00054.

33

P. D.A. Kraaijenbrink, M. F.P. Bierkens, A. F. Lutz, and W. W. Immerzeel. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature, 549(7671):257–260, 2017. doi:10.1038/nature23878.

34

Akiko Sakai and Koji Fujita. Contrasting glacier responses to recent climate change in high-mountain Asia. Scientific Reports, 7(1):1–8, 2017. doi:10.1038/s41598-017-14256-5.

35

Sarah Shannon, Robin Smith, Andy Wiltshire, Tony Payne, Matthias Huss, Richard Betts, John Caesar, Aris Koutroulis, Darren Jones, and Stephan Harrison. Global glacier volume projections under high-end climate change scenarios. The Cryosphere, l:1–36, 2019. doi:10.5194/tc-2018-35.

36

David R. Rounce, Tushar Khurana, Margaret B. Short, Regine Hock, David E. Shean, and Douglas J. Brinkerhoff. Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: Application to High Mountain Asia. Journal of Glaciology, 66(256):175–187, 2020. doi:10.1017/jog.2019.91.

37

B. Marzeion, P. W. Leclercq, J. G. Cogley, and a. H. Jarosch. Brief Communication: Global glacier mass loss reconstructions during the 20th century are consistent. The Cryosphere Discussions, 9(4):3807–3820, 2015. doi:10.5194/tcd-9-3807-2015.

38

B Marzeion, J G Cogley, K Richter, and D Parkes. Attribution of global glacier mass loss to anthropogenic and natural causes. Science, aug 2014. doi:10.1126/science.1254702.

39

Andrew Bliss, Regine Hock, and Valentina Radić. Global response of glacier runoff to twenty-first century climate change. Journal of Geophysical Research: Earth Surface, 119(4):717–730, apr 2014. doi:10.1002/2013JF002931.

40

Matthias Huss and Regine Hock. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2):135–140, 2018. doi:10.1038/s41558-017-0049-x.

41

David R. Rounce, Regine Hock, and David E. Shean. Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM). Frontiers in Earth Science, jan 2020. doi:10.3389/feart.2019.00331.

42

Johannes Jakob Fürst, Fabien Gillet-chaulet, Toby J Benham, Julian A Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard. The Cryosphere Discussions, pages 1–43, 2017. doi:10.5194/tc-2017-30.

43

David Parkes and Ben Marzeion. Twentieth-century contribution to sea-level rise from uncharted glaciers. Nature, 563(7732):551–554, 2018. doi:10.1038/s41586-018-0687-9.

44

Johannes Oerlemans and F. M. Nick. A minimal model of a tidewater glacier. Annals of Glaciology, 42:1–6, 2005. doi:10.3189/172756405781813023.

45

Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet. Deep learning applied to glacier evolution modelling. The Cryosphere, 14(2):565–584, feb 2020. doi:10.5194/tc-14-565-2020.

46

Cameron J. Rye, Ian C. Willis, Neil S. Arnold, and Jack Kohler. On the need for automated multiobjective optimization and uncertainty estimation of glacier mass balance models. Journal of Geophysical Research, 117(F2):F02005, apr 2012. doi:10.1029/2011JF002184.

47

L. Lliboutry. Multivariate Statistical Analysis of Glacier Annual Balances. Journal of Glaciology, 13(69):371–392, jan 1974. doi:10.3189/S0022143000023169.

48

David Parkes and Hugues Goosse. Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model. Cryosphere, 14(9):3135–3153, 2020. doi:10.5194/tc-14-3135-2020.

49

Regine Hock, Andrew Bliss, B. E.N. Marzeion, Rianne H. Giesen, Yukiko Hirabayashi, Matthias Huss, Valentina Radic, and Aimeé B.A. Slangen. GlacierMIP-A model intercomparison of global-scale glacier mass-balance models and projections. Journal of Glaciology, 65(251):453–467, 2019. doi:10.1017/jog.2019.22.

50

Harry Zekollari, Matthias Huss, and Daniel Farinotti. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. Cryosphere, 13(4):1125–1146, 2019. doi:10.5194/tc-13-1125-2019.